K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Đặt \(a=x,b=\sqrt{2-2x^2}\left(b\ge0\right),\left(-1< a< 1\right)\)
\(\Rightarrow2a^2+b^2=2\left(1\right)\)

Theo đb: \(\frac{1}{a}+\frac{1}{b}=2\left(2\right)\)

Giải hpt (1) và (2) tìm a, b kết hợp đkiện r giải ra x

13 tháng 3 2018

Đặt \(\sqrt{2-x^2}=a\)

=> a^2 + x^2 = 2

Theo pt có : 1/x + 1/a = 2

Đến đó bạn tự giải nha

Còn bài của Lê Anh Tú thì đặt sai dẫn đến biến đổi sai nha 

Tk mk nha

3 tháng 11 2018

\(\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+...+\frac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}+\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+2}+\sqrt{x+3}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{\left(\sqrt{x+2019}+\sqrt{x+2020}\right)\left(\sqrt{x+2020}-\sqrt{x+2019}\right)}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{x+2-x-1}+\frac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{x+2020-x-2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+3}-\sqrt{x+2}+...+\sqrt{x+2020}-\sqrt{x+2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}-\sqrt{x+1}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}=11+\sqrt{x+1}\)

\(\Leftrightarrow\)\(x+2020=121+22\sqrt{x+1}+x+1\)

\(\Leftrightarrow\)\(22\sqrt{x+1}=1898\)

\(\Leftrightarrow\)\(\sqrt{x+1}=\frac{949}{11}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=\frac{900601}{121}\\x+1=\frac{-900601}{121}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{900480}{121}\\x=\frac{-900722}{121}\end{cases}}\)

Chúc bạn học tốt ~ 

PS : sai thì thui nhá 

3 tháng 11 2018

Bài của bạn Quân làm đúng ùi nhưng mà căn thì không ra số âm nhé!

16 tháng 12 2020

ĐKXĐ: \(x\ge1\)

Ta có:

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=\dfrac{x+3}{2}\\ \Leftrightarrow\sqrt{x-1}+\left|\sqrt{x-1}-1\right|=\dfrac{x+1}{2}\left(1\right)\)

Ta xét 2 trường hợp sau:

TH1: \(x\ge2\)

Khi đó:

\(\left(1\right)\Leftrightarrow2\sqrt{x-1}-1=\dfrac{x+1}{2}\\ \Leftrightarrow2\sqrt{x-1}=\dfrac{x+3}{2}\\ \Leftrightarrow16\left(x-1\right)=x^2+6x+9\\ \Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\left(TMĐK\right)\)

TH2: \(1\le x< 2\)

Khi đó:

\(\left(1\right)\Leftrightarrow1=\dfrac{x+1}{2}\Leftrightarrow x=1\left(TMĐK\right)\)

Vậy x=1 hoặc x=5

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

22 tháng 9 2016

lượng liên hợp mẫu lên em nhé!!!!!!!!!!!!!

22 tháng 9 2016

\(\frac{1}{x+\sqrt{x+x^2}}+\frac{1}{x-\sqrt{1+x^2}}=-2\)

\(\frac{x-\sqrt{1+x^2}+x+\sqrt{1+x^2}}{\left(x+\sqrt{x+x^2}\right)\cdot\left(x-\sqrt{1+x^2}\right)}=-2\)

\(\frac{2x}{-1}=-2\)

\(x=1\)

10 tháng 6 2016

ĐKXĐ:x khác 0

Trục căn thức ở mẫu ta được:

\(\left(\sqrt{x+3}-\sqrt{x+2}\right)+\left(\sqrt{x+2}-\sqrt{x+1}\right)+\left(\sqrt{x+1}-\sqrt{x}\right)=1.\)

<=> \(\sqrt{x+3}=\sqrt{x}+1\)

<=> \(x+3=x+2\sqrt{x}+1\)

=> 2\(\sqrt{x}=2\)

=> x=1

10 tháng 6 2016

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\left(DKXD:x\ge0\right)\)

\(\Rightarrow\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(x+3\right)-\left(x+2\right)}+\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(x+2\right)-\left(x+1\right)}+\frac{\sqrt{x+1}-\sqrt{x}}{\left(x+1\right)-x}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\Leftrightarrow x+3=\left(1+\sqrt{x}\right)^2\Leftrightarrow x+3=x+1+2\sqrt{x}\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(TMDK\right)\)

Vậy tập nghiệm của phương trình : \(S=\left\{1\right\}\)

24 tháng 5 2018

Giải 

Điều kiện x,y>0

Từ hệ phương trình đề bài cho ta biến đổi

\(\sqrt{2-1/y}=2-1/\sqrt{x} \)   (1)

\(\sqrt{2-1/x}=2-1/\sqrt{y} \)   (2)

Ta bình phương cả 2 vế (1) và (2) thì ta được hệ phương trinh ở dạng triển khai là

\(2-1/y=4-4/\sqrt{x}+1/x\) (3)

\(2-1/x=4-4/\sqrt{y}+1/y\)  (4)

Thu gọn vê 3 và 4 ta được hệ phương trình sau

\(2-4/\sqrt{x}+1/x+1/y=0 \) (5)

\(2-4/\sqrt{y}+1/x+1/y=0 \) (6)

Ta có vế trái của phương trình 5 và 6 bằng nhau vì cùng bằng 0 nên ta được phương mới từ (5) và (6)

\(2-4/\sqrt{x}+1/x+1/y=2-4/\sqrt{y}+1/x+1/y \) (7)

Sau thu gọn phương trình 7 ta được 

\(-4/\sqrt{x}=-4/\sqrt{y}\)

=>\(1/\sqrt{x}=1/\sqrt{y}\)

Từ đây ta có thể dễ dạng suy ra x=y với điều kiên x,y>0

Vậy S={x=y/x,y>0}.