Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\)
<=> \(\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{1}{x+1}=0\)
<=> \(\frac{2}{\left(x-1\right)^2\left(x+1\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}+\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}=0\)
<=> \(2+3x-3+x^2-2x+1=0\)
<=> x2 + x = 0
<=> x(x + 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy S = {0; -1}
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-x}+1\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x^2-4+3x+3=3+x^2-2x+x-2\)
\(\Leftrightarrow x^2-x^2+3x+2x-x=1+4-3\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{x^2-x-2}=\frac{3+x^2-x-2}{x^2-x-2}\)
\(x^2-4+3x+3=1+x^2-x\)
\(x^2+3x-1-1-x^2+x=0\)
\(4x-2=0\)
\(4x=2\Leftrightarrow x=\frac{1}{2}\)
Vậy.....
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
\(\Leftrightarrow\)\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x+1\right).\left(x-2\right)}+1\)
ĐKXĐ: \(x\ne-1,2\)
\(\frac{\left(x+2\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}+\)\(\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}=\)\(\frac{3}{\left(x+1\right).\left(x-2\right)}+\frac{\left(x+1\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)
\(\Leftrightarrow\) \(\left(x^2-4\right)\) \(+3.\left(x+1\right)=\)\(3+\left(x+1\right).\left(x-2\right)\)
\(\Leftrightarrow\) x2 - 4 + 3x + 3 = 3 + x2 - x - 2
\(\Leftrightarrow\) x2 + 3x - x2 + x = 4 - 3 + 3 - 2
\(\Leftrightarrow\) 4x = 2
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy phương trình có nghiệm là: \(x=\frac{1}{2}\)
ĐK: x \(\ne\)-1; x \(\ne\)2
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
<=> \(\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
<=> x2 - 4 + 3x + 3 = 3 + x2 - x - 2
<=> x2 + 3x - x2 + x = 1 + 1
<=> 4x = 2
<=> x = 1/2
Vậy S = {1/2}
ĐK \(x\ne0\)
Ta có \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)}{x\cdot\left(x^4+x^2+1\right)}-\frac{x\left(x-1\right)\left(x^2+x+1\right)}{x\left(x^4+x^2+1\right)}=\frac{3}{x\left(x^4+x^2+1\right)}\)
\(\Rightarrow\left(x^2+x\right)\left(x^2-x+1\right)-\left(x^2-x\right)\left(x^2+x+1\right)=3\)
\(\Leftrightarrow x^4-x^3+x^2+x^3-x^2+x-x^4-x^3-x^2+x^3+x^2+x=3\)
\(\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\left(tm\right)\)
Vậy \(x=\frac{3}{2}\)
a) \(ĐKXĐ:x\ne\pm3\)
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x+3+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow x+3+x\left(x-3\right)=2\)\(\Leftrightarrow x+3+x^2-3x=2\)
\(\Leftrightarrow x+3+x^2-3x-2=0\)\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)
b) \(x^2-1=\left|x+1\right|\)(1)
TH1: Nếu \(x+1< 0\)\(\Leftrightarrow x< -1\)
\(\Rightarrow\left|x+1\right|=-\left(x+1\right)\)
(1) \(\Leftrightarrow x^2-1=-\left(x+1\right)\)\(\Leftrightarrow x^2-1+x+1=0\)
\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
So sánh với ĐK ta thây không có giá trị nào của x thoả mãn
TH2: Nếu \(x+1\ge0\)\(\Leftrightarrow x\ge-1\)
\(\Rightarrow\left|x+1\right|=x+1\)
(1) \(\Leftrightarrow x^2-1=x+1\)\(\Leftrightarrow x^2-1-x-1=0\)
\(\Leftrightarrow x^2-x-2=0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
So sánh với ĐKXĐ ta thấy cả 2 giá trị của x đều thoả mãn
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\left(x\ne\pm3\right)\)
\(\Leftrightarrow\frac{1}{x-3}+\frac{x}{x+3}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x+3+x^2-3x-2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2-2x+1}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
<=> x-1=0
<=> x=1 (tmđk)
Điều kiện xác định: x ≠ 1; x ≠ 2; x ≠ 3.
⇒ 3(x – 3) + 2(x – 2) = x – 1
⇔ 3x – 9 + 2x – 4 = x – 1
⇔ 3x + 2x – x = 9 + 4 – 1
⇔ 4x = 12
⇔ x = 3 (không thỏa mãn điều kiện xác định)
Vậy phương trình vô nghiệm.