K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\) 

\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{x^2-x-2}=\frac{3+x^2-x-2}{x^2-x-2}\) 

\(x^2-4+3x+3=1+x^2-x\) 

\(x^2+3x-1-1-x^2+x=0\) 

\(4x-2=0\) 

\(4x=2\Leftrightarrow x=\frac{1}{2}\)  

Vậy.....

9 tháng 7 2019

\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

\(\Leftrightarrow\)\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x+1\right).\left(x-2\right)}+1\)

ĐKXĐ: \(x\ne-1,2\)

\(\frac{\left(x+2\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}+\)\(\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}=\)\(\frac{3}{\left(x+1\right).\left(x-2\right)}+\frac{\left(x+1\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)

\(\Leftrightarrow\) \(\left(x^2-4\right)\) \(+3.\left(x+1\right)=\)\(3+\left(x+1\right).\left(x-2\right)\)

\(\Leftrightarrow\) x2 - 4 + 3x + 3 = 3 + x2 - x - 2

\(\Leftrightarrow\) x2 + 3x - x2 + x = 4 - 3 + 3 - 2

\(\Leftrightarrow\) 4x = 2

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy phương trình có nghiệm là: \(x=\frac{1}{2}\)

8 tháng 7 2019

0.5 nha bạn

Chúc bạn học tốt! :)

\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-x}+1\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow x^2-4+3x+3=3+x^2-2x+x-2\)

\(\Leftrightarrow x^2-x^2+3x+2x-x=1+4-3\)

\(\Leftrightarrow4x=2\)

\(\Leftrightarrow x=\frac{1}{2}\)

24 tháng 3 2020

\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\)

<=> \(\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{1}{x+1}=0\)

<=> \(\frac{2}{\left(x-1\right)^2\left(x+1\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}+\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}=0\)

<=> \(2+3x-3+x^2-2x+1=0\)

<=> x2 + x = 0

<=> x(x + 1) = 0

<=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy S = {0; -1}

1 tháng 3 2020

\(x-\frac{\frac{x}{2}-\frac{3+x}{4}}{2}=3-\frac{\left(1-\frac{6-x}{3}\right).\frac{1}{2}}{2}\)

\(\Leftrightarrow2x-\frac{x}{2}+\frac{3+x}{4}=6-\frac{1}{2}+\frac{6-x}{6}\)

\(\Leftrightarrow24x-6x+9+3x=72-6+12-2x\)

\(\Leftrightarrow23x=69\)

\(\Leftrightarrow x=3\)

Vậy nghiệm của pt x=3

23 tháng 3 2019

a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)

\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)

\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0

\(x-1=0\)

\(x=1\)

22 tháng 4 2017

\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)

\(\Leftrightarrow5x-10-15x\le9+10x+10\)

\(\Leftrightarrow-20x\le29\)

\(\Leftrightarrow x\ge-1,45\)

Vậy ...........

\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)

\(\Leftrightarrow x+2-3x+9-5x+10=0\)

\(\Leftrightarrow-7x+21=0\)

\(\Leftrightarrow x=3\)

Vậy ..............

23 tháng 4 2017

 \(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)

\(\Leftrightarrow5x-10-15x-9-10x-10\le0\) 

 \(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)

 \(\Leftrightarrow x\ge-\frac{29}{20}\)

4 tháng 4 2020

\(a,\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-7}{x+2}\left(x\ne1;x\ne-2\right)\)

\(\Leftrightarrow\frac{3}{x^2+x-2}-\frac{1}{x-1}+\frac{7}{x+2}=0\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{1\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{7\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{x+2}{\left(x-1\right)\left(x+2\right)}+\frac{7x-7}{\left(x-1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{3-x-2+7x-7}{\left(x-1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{6x-8}{\left(x-1\right)\left(x+2\right)}=0\)

=> 6x-8=0

<=> x=\(\frac{8}{6}=\frac{4}{3}\left(tmđk\right)\)

4 tháng 4 2020

b) ĐKXĐ: x khác 2; x khác 4

\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\)

<=> \(\frac{2}{\left(x-2\right)\left(x-4\right)}+\frac{x-1}{x-2}=\frac{x+3}{x-4}\)

<=> 2(x - 2) + (x - 1)(x - 4)(x - 2) = (x + 3)(x - 2)(x - 2)

<=> x^3 - 7x^2 + 16x - 12 = -x^3 + x^2 + 8x - 12

<=> x^2 - 7x^2 + 16x - 12 + x^3 - x^2 + 8x - 12 = 0

<=> 2x^3 - 8x^2 + 8x = 0

<=> 2x(x - 2)(x - 2) = 0

<=> 2x = 0 hoặc x - 2 = 0

<=> x = 0 (tmđk) hoặc x = 2 (ktmđk)

=> x = 2

22 tháng 4 2020

ĐKXĐ \(x\ne0,-1,-2,...,-100\)

\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+...+\frac{1}{x^2+199x+9900}=\frac{25}{51}\)

\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+...+\frac{1}{x^2+99x+100x+9900}=\frac{25}{51}\)

\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+....+\frac{1}{x\left(x+99\right)+100\left(x+99\right)}=\frac{25}{51}\)

\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{25}{21}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{25}{21}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{25}{21}\)

\(\Leftrightarrow\frac{x+100-x}{x\left(x+100\right)}=\frac{25}{21}\)

\(\Leftrightarrow\frac{100}{x\left(x+100\right)}=\frac{25}{21}\)

\(\Leftrightarrow25x^2+2500x=2100\)

\(\Leftrightarrow x^2+100x-84=0\)

\(\Leftrightarrow x^2+2.x.50+50^2-50^2-84=0\)

\(\Leftrightarrow\left(x+50\right)^2-2584=0\)

\(\Leftrightarrow\left(x+50-2\sqrt{646}\right)\left(x+50+2\sqrt{646}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-50+2\sqrt{646}\\x=-50-2\sqrt{646}\end{cases}}\)

Vậy ...

22 tháng 4 2020

Lê Tài Bảo Châu Vậy ý bạn là \(x^2+4x+3=\left(x+2\right)\left(x+3\right)\)?????

Ban đầu mik cũng có ý tưởng như bạn nhưng thấy nó k đúng với hạng tử thứ 3, xong mới đăng lên đây tìm lời giải khác á~

p/s: nhưng cũng có thể xảy ra trường hợp đề bài sai :((

4 tháng 4 2020

ĐK: x \(\ne\)-1; x \(\ne\)2

\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

<=> \(\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)

<=>  x2 - 4 + 3x + 3 = 3 + x2 - x - 2

<=> x2 + 3x - x2 + x = 1 + 1

<=> 4x = 2

<=> x = 1/2

Vậy S = {1/2}