\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

a) \(ĐKXĐ:x\ne\pm3\)

\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{x+3+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow x+3+x\left(x-3\right)=2\)\(\Leftrightarrow x+3+x^2-3x=2\)

\(\Leftrightarrow x+3+x^2-3x-2=0\)\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)( thoả mãn ĐKXĐ )

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

b) \(x^2-1=\left|x+1\right|\)(1)

TH1: Nếu \(x+1< 0\)\(\Leftrightarrow x< -1\)

\(\Rightarrow\left|x+1\right|=-\left(x+1\right)\)

(1) \(\Leftrightarrow x^2-1=-\left(x+1\right)\)\(\Leftrightarrow x^2-1+x+1=0\)

\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

So sánh với ĐK ta thây không có giá trị nào của x thoả mãn

TH2: Nếu \(x+1\ge0\)\(\Leftrightarrow x\ge-1\)

\(\Rightarrow\left|x+1\right|=x+1\)

(1) \(\Leftrightarrow x^2-1=x+1\)\(\Leftrightarrow x^2-1-x-1=0\)

\(\Leftrightarrow x^2-x-2=0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

So sánh với ĐKXĐ ta thấy cả 2 giá trị của x đều thoả mãn

Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)

13 tháng 4 2020

\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\left(x\ne\pm3\right)\)

\(\Leftrightarrow\frac{1}{x-3}+\frac{x}{x+3}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x+3+x^2-3x-2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{x^2-2x+1}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

<=> x-1=0

<=> x=1 (tmđk)

16 tháng 8 2016

a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\)                               ĐKXĐ : x #0, x#2, x#-2

<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)

<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)

=> 10 - 2x + 7x - 14 = 4x - 4 + x

<=>-2x + 7x - 4x + x  = -4 - 10 + 14

<=>x=-14

28 tháng 3 2020

a) ĐKXĐ: x khác +2

\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)

<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)

<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)

<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22

<=> x^2 - 7x - 2 = 2x - 22

<=> x^2 - 7x - 2 - 2x + 22 = 0

<=> x^2 - 9x + 20 = 0

<=> (x - 4)(x - 5) = 0

<=> x - 4 = 0 hoặc x - 5 = 0

<=> x = 4 hoặc x = 5

làm nốt đi 

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)

21 tháng 7 2016

a)2x-5/x+5=3=>2x-5=3(x+5)=3x+15

=>2x=3x+20=>x=-20

b)(x^2-6)/x=x+3/2

=>(x^2-6)/x - x=3/2

=>-6/x[quy đồng]=3/2

=>x=-4

c)Để (x^2+2x)(3x+6)/x3=0

thì  (x^2+2x)(3x+6)=0

=x(x+2)-3(x+2)=(x-3)(x+2)=0

=>x=3 hoặc x=-2

Mà ở mẫu có x-3 nếu x=3 thì mẫu =0=>loại

Vậy x=2

d)5/3x+2=2x1

=>5=(3x+2)(2x-1)

Tìm ước của 5 rùi thay vào 3x+2 và 2x-1 rùi tìm x,cái đó dễ nên bn tự lm nhé

e)

(2x1/x1)+1=1/x1

=>1/x-1-2x-1/x-1=1

=>-2x/x-1=1

=>-2x=x-1

=>x=1/3

g)(x+3/x+1)+(x2/x)=2

=>quy đồng rùi tính và tìm x nhé bn,mk mỏi tay rùi

nhớ tick cho mk nha,mk siêng lắm ms ghi cho bn nhiều thế này nè,nhớ tick nha,thanks

21 tháng 7 2016

a)  \(\frac{2x-5}{x+5}=3\)

  \(\Leftrightarrow2x-5=3\left(x+5\right)\)

  \(\Leftrightarrow2x-5=3x+15\)

  \(\Leftrightarrow2x-3x=15+5\)

  \(\Leftrightarrow-x=20\\ \)

   \(\Leftrightarrow x=-20\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\)

  \(\Leftrightarrow\frac{x^2-6}{x}=\frac{2x+3}{2}\)

  \(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)

  \(\Leftrightarrow2x^2-12=2x^2+3x\)

  \(\Leftrightarrow3x=-12\)

  \(\Leftrightarrow x=-4\) 

c) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

  \(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)

  \(\Leftrightarrow\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

  \(\Leftrightarrow x+2=0\)

  \(\Leftrightarrow x=-2\)

d)  \(\frac{5}{3x+2}=2x-1\)

 \(\Leftrightarrow5=\left(2x-1\right)\left(3x+2\right)\)

 \(\Leftrightarrow5=6x^2+x-2\)

 \(\Leftrightarrow6x^2+x-7=0\)

 \(\Leftrightarrow\left[\begin{array}{nghiempt}1\\\frac{-7}{6}\end{array}\right.\)

e)  \(\frac{2x-1}{x-1}+1=\frac{1}{x-1}\)

   \(\Leftrightarrow2x-1+x-1=1\)

   \(\Leftrightarrow3x=3\)

   \(\Leftrightarrow x=1\)

g) \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

  \(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)

  \(\Leftrightarrow x\left(x+3\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

  \(\Leftrightarrow x^2+3x+x^2-x-2=2x^2+2x\)

  \(\Leftrightarrow2x-2x-2=0\)

  \(\Leftrightarrow-2=0\)    \(\Rightarrow\)Phương trình vô nghiệm