Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ne\pm3\)
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x+3+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow x+3+x\left(x-3\right)=2\)\(\Leftrightarrow x+3+x^2-3x=2\)
\(\Leftrightarrow x+3+x^2-3x-2=0\)\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)
b) \(x^2-1=\left|x+1\right|\)(1)
TH1: Nếu \(x+1< 0\)\(\Leftrightarrow x< -1\)
\(\Rightarrow\left|x+1\right|=-\left(x+1\right)\)
(1) \(\Leftrightarrow x^2-1=-\left(x+1\right)\)\(\Leftrightarrow x^2-1+x+1=0\)
\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
So sánh với ĐK ta thây không có giá trị nào của x thoả mãn
TH2: Nếu \(x+1\ge0\)\(\Leftrightarrow x\ge-1\)
\(\Rightarrow\left|x+1\right|=x+1\)
(1) \(\Leftrightarrow x^2-1=x+1\)\(\Leftrightarrow x^2-1-x-1=0\)
\(\Leftrightarrow x^2-x-2=0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
So sánh với ĐKXĐ ta thấy cả 2 giá trị của x đều thoả mãn
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\left(x\ne\pm3\right)\)
\(\Leftrightarrow\frac{1}{x-3}+\frac{x}{x+3}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x+3+x^2-3x-2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2-2x+1}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
<=> x-1=0
<=> x=1 (tmđk)
a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\) ĐKXĐ : x #0, x#2, x#-2
<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)
<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)
=> 10 - 2x + 7x - 14 = 4x - 4 + x
<=>-2x + 7x - 4x + x = -4 - 10 + 14
<=>x=-14
a) ĐKXĐ: x khác +2
\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)
<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)
<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22
<=> x^2 - 7x - 2 = 2x - 22
<=> x^2 - 7x - 2 - 2x + 22 = 0
<=> x^2 - 9x + 20 = 0
<=> (x - 4)(x - 5) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
làm nốt đi
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
a)2x-5/x+5=3=>2x-5=3(x+5)=3x+15
=>2x=3x+20=>x=-20
b)(x^2-6)/x=x+3/2
=>(x^2-6)/x - x=3/2
=>-6/x[quy đồng]=3/2
=>x=-4
c)Để (x^2+2x)−(3x+6)/x−3=0
thì (x^2+2x)−(3x+6)=0
=x(x+2)-3(x+2)=(x-3)(x+2)=0
=>x=3 hoặc x=-2
Mà ở mẫu có x-3 nếu x=3 thì mẫu =0=>loại
Vậy x=2
d)5/3x+2=2x−1
=>5=(3x+2)(2x-1)
Tìm ước của 5 rùi thay vào 3x+2 và 2x-1 rùi tìm x,cái đó dễ nên bn tự lm nhé
e)
(2x−1/x−1)+1=1/x−1
=>1/x-1-2x-1/x-1=1
=>-2x/x-1=1
=>-2x=x-1
=>x=1/3
g)(x+3/x+1)+(x−2/x)=2
=>quy đồng rùi tính và tìm x nhé bn,mk mỏi tay rùi
nhớ tick cho mk nha,mk siêng lắm ms ghi cho bn nhiều thế này nè,nhớ tick nha,thanks
a) \(\frac{2x-5}{x+5}=3\)
\(\Leftrightarrow2x-5=3\left(x+5\right)\)
\(\Leftrightarrow2x-5=3x+15\)
\(\Leftrightarrow2x-3x=15+5\)
\(\Leftrightarrow-x=20\\ \)
\(\Leftrightarrow x=-20\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\)
\(\Leftrightarrow\frac{x^2-6}{x}=\frac{2x+3}{2}\)
\(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)
\(\Leftrightarrow2x^2-12=2x^2+3x\)
\(\Leftrightarrow3x=-12\)
\(\Leftrightarrow x=-4\)
c) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
d) \(\frac{5}{3x+2}=2x-1\)
\(\Leftrightarrow5=\left(2x-1\right)\left(3x+2\right)\)
\(\Leftrightarrow5=6x^2+x-2\)
\(\Leftrightarrow6x^2+x-7=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}1\\\frac{-7}{6}\end{array}\right.\)
e) \(\frac{2x-1}{x-1}+1=\frac{1}{x-1}\)
\(\Leftrightarrow2x-1+x-1=1\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\)
g) \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)
\(\Leftrightarrow x\left(x+3\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+3x+x^2-x-2=2x^2+2x\)
\(\Leftrightarrow2x-2x-2=0\)
\(\Leftrightarrow-2=0\) \(\Rightarrow\)Phương trình vô nghiệm