K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

2x3 - 15x2 + 26x - 5 = 0

<=> 2x3 - 10x2 - 5x2 + 25x + x - 5 = 0

<=> 2x2( x - 5 ) - 5x( x - 5 ) + ( x - 5 ) = 0

<=> ( x - 5 )( 2x2 - 5x + 1 ) = 0

<=> \(\orbr{\begin{cases}x-5=0\\2x^2-5x+1=0\end{cases}}\)

+) x - 5 = 0 <=> x = 5

+) 2x2 - 5x + 1 = 0

Δ = b2 - 4ac = (-5)2 - 4.2.1 = 25 - 8 = 17

Δ > 0, áp dụng công thức nghiệm thu được \(x_1=\frac{5+\sqrt{17}}{4};x_2=\frac{5-\sqrt{17}}{4}\)

Vậy phương trình đã cho có ba nghiệm \(x_1=\frac{5+\sqrt{17}}{4};x_2=\frac{5-\sqrt{17}}{4};x_3=5\)

10 tháng 5 2022

\(x^6-6x^5+15x^4-20x^3+15x^2-6x+1=0\)

\(\Leftrightarrow x^6-x^5-5x^5+5x^4+10x^4-10x^3-10x^3+10x^2+5x^2-5x-x+1=0\)

\(\Leftrightarrow x^5\left(x-1\right)-5x^4\left(x-1\right)+10x^3\left(x-1\right)-10x^2\left(x-1\right)+5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^5-5x^4+10x^3-10x^2+5x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^5-x^4-4x^4+4x^3+6x^3-6x^2-4x^2+4x+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^4\left(x-1\right)-4x^3\left(x-1\right)+6x^2\left(x-1\right)-4x\left(x-1\right)+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^4-4x^3+6x^2-4x+1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^4-x^3-3x^3+3x^2+3x^2-3x-x+1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^3\left[x^3-3x^2+3x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^3\left[x^3-x^2-2x^2+2x+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^4\left[x^2-2x+1\right]=0\Leftrightarrow\left(x-1\right)^6=0\Leftrightarrow x=1\)

3 tháng 11 2018

\(\left(2x^2+3\right)^2-10x^2-15x=0\)

\(\Leftrightarrow4x^4+12x^2+9-10x^2-15x=0\)

\(\Leftrightarrow4x^4+2x^2-15x+9=0\)

\(\Leftrightarrow4x^4-4x^2+6x^2-6x-9x+9=0\)

\(\Leftrightarrow4x^2\left(x^2-1\right)+6x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow4x^2\left(x-1\right)\left(x+1\right)+6x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[4x\left(x+1\right)+6x-9\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2+10x-9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2+10x+\frac{25}{4}+\frac{11}{4}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2x+\frac{5}{2}\right)^2+\frac{11}{4}\right]=0\)

Vì \(\left(2x+\frac{5}{2}\right)^2+\frac{11}{4}>0\)

=> x - 1 = 0

=> x = 1 

Vậy x = 1

23 tháng 3 2020

\(15x^4+30x^3+13x^2-2x-1=0\)

<=> \(15x^4+15x^3+15x^3+15x^2-2x^2-2x-1=0\)

<=> \(15x^2\left(x^2+x\right)+15x\left(x^2+x\right)-2\left(x^2+x\right)-1\)

<=> \(15\left(x^2+x\right)^2-2\left(x^2+x\right)-1=0\)

<=> \(\orbr{\begin{cases}x^2+x=\frac{1}{3}\\x^2+x=\frac{1}{5}\end{cases}}\)

Em tự giải tiếp nhé!

8 tháng 12 2017

mk mới lớp 6 thôi ,lớp 9 mình .......mình.........chịu (I VERY SORRY YOU!!)

26 tháng 7 2017

sorry, i cant do it

AH
Akai Haruma
Giáo viên
23 tháng 1 2017

Lời giải:

ĐKXĐ: Mọi số thực $x$

\(\text{PT}\Leftrightarrow 8x^2-26x-2+5\sqrt{(x^2-x+1)(2x^2+7x+7)}=0\)

Đặt \(\left\{\begin{matrix} \sqrt{x^2-x+1}=a\\ \sqrt{2x^2+7x+7}=b\end{matrix}\right.\)

\(\text{PT}\Leftrightarrow 12a^2-2b^2+5ab=0\)\(\Leftrightarrow (4a-b)(3a+2b)=0\)

+) Nếu \(4a-b=0\Rightarrow 16(x^2-x+1)=2x^2+7x+7\)

\(\Leftrightarrow 14x^2-23x+9=0\Leftrightarrow \sqsubset ^{x=1}_{x=\frac{9}{14}}\)

+) Nếu \(3a+2b=0\Rightarrow 3\sqrt{x^2-x+1}+2\sqrt{2x^2+2x+7}=0\)

Vì căn bậc hai của một số thực xác định luôn dương nên \(\left\{\begin{matrix} x^2-x+1=0\\ \\ 2x^2+7x+7=0\end{matrix}\right.(\text{vl})\)

Vậy \(x\in \left \{ 1,\frac{9}{14} \right \}\) là nghiệm của PT

15 tháng 5 2021

`1)x^4 -10x^3 +26x^2 -10x+1=0`
`x=0=>VT=1=>x=0(l)`
Chia 2 vế cho `x^2>0` ta có
`x^2-10x+26-10/x+1/x^2=0`
`=>x^2+1/x^2+26-10(x+1/x)=0`
`=>(x+1/x)^2-10(x+1/x)+24=0`
Đặt `a=x+1/x`
`pt<=>a^2-10a+24=0`
`<=>` $\left[ \begin{array}{l}a=4\\a=6\end{array} \right.$
`a=4<=>x+1/x=4<=>x^2-4x+1=0<=>` $\left[ \begin{array}{l}x=\sqrt3+2\\x=-\sqrt3+2\end{array} \right.$
`a=6<=>x+1/x=6<=>x^2-6x+1=0<=>` $\left[ \begin{array}{l}x=\sqrt8+3\\x=-\sqrt8+3\end{array} \right.$
Vậy `S={\sqrt3+2,-\sqrt3+2,\sqrt8+3,-\sqrt8+3}`

15 tháng 5 2021

2)Do hệ số chẵn bằng=hệ số lẻ
`=>x=-1`
`pt<=>x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0`
`<=>(x+1)(x^3+4x^2+6x+9)=0`
`<=>(x+1)(x^3+3x^2+x^2+6x+9)=0`
`<=>(x+1)[x^2(x+3)+(x+3)^2]=0`
`<=>(x+1)(x+3)(x^2+x+3)=0`
Do `x^2+x+3=(x+1/2)^2+11/4>0`
`=>` $\left[ \begin{array}{l}x=-3\\x=-1\end{array} \right.$
Vậy `S={-1,-3}`

18 tháng 2

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.