Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)
=>\(\sqrt{x^2-x+1}-x+\sqrt{x^2-9x+9}-x=0\)
=>\(\dfrac{x^2-x+1-x^2}{\sqrt{x^2-x+1}+x}+\dfrac{x^2-9x+9-x^2}{\sqrt{x^2-9x+9}+x}=0\)
=>\(\left(-x+1\right)\left(\dfrac{1}{\sqrt{x^2-x+1}+x}+\dfrac{9}{\sqrt{x^2-9x+9}+x}\right)=0\)
=>-x+1=0
=>x=1
ĐK: \(x^3+4x^2+5x+6\ge0\)
Ta có: \(x^3+4x^2+5x+6=\left(x+3\right)\left(x^2+x+2\right);x^2+2x+5=\left(x+3\right)+\left(x^2+x+2\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x+3}=u\\\sqrt{x^2+x+2}=v\end{cases}}\)
Vậy nên ta có phương trình: \(\)\(u^2+v^2=\frac{5}{2}uv\)
\(\Leftrightarrow2u^2-5uv+2v^2=0\Leftrightarrow\orbr{\begin{cases}u=2v\\u=\frac{1}{2}v\end{cases}}\)
Với u = 2v ta có: \(\sqrt{x+3}=2\sqrt{x^2+x+2}\Leftrightarrow x+3=4x^2+4x+8\)
\(\Leftrightarrow4x^2+3x+5=0\) (Vô nghiệm)
Với \(u=\frac{1}{2}v\) ta có: \(2\sqrt{x+3}=\sqrt{x^2+x+2}\Leftrightarrow4x+12=x^2+x+2\)
\(\Leftrightarrow x^2-3x-10=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\left(tmđk\right)\)
Vậy phương trình có nghiệm \(x\in\left\{5;-2\right\}\)
Lời giải:
ĐKXĐ: Mọi số thực $x$
\(\text{PT}\Leftrightarrow 8x^2-26x-2+5\sqrt{(x^2-x+1)(2x^2+7x+7)}=0\)
Đặt \(\left\{\begin{matrix} \sqrt{x^2-x+1}=a\\ \sqrt{2x^2+7x+7}=b\end{matrix}\right.\)
\(\text{PT}\Leftrightarrow 12a^2-2b^2+5ab=0\)\(\Leftrightarrow (4a-b)(3a+2b)=0\)
+) Nếu \(4a-b=0\Rightarrow 16(x^2-x+1)=2x^2+7x+7\)
\(\Leftrightarrow 14x^2-23x+9=0\Leftrightarrow \sqsubset ^{x=1}_{x=\frac{9}{14}}\)
+) Nếu \(3a+2b=0\Rightarrow 3\sqrt{x^2-x+1}+2\sqrt{2x^2+2x+7}=0\)
Vì căn bậc hai của một số thực xác định luôn dương nên \(\left\{\begin{matrix} x^2-x+1=0\\ \\ 2x^2+7x+7=0\end{matrix}\right.(\text{vl})\)
Vậy \(x\in \left \{ 1,\frac{9}{14} \right \}\) là nghiệm của PT