Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y)2 = (x+y)(x-y)
<=>x2 + 2xy + y2 = x2 - y2
<=>2y2 + 2xy = 0
<=>2y(x+y) = 0
<=> y = 0 hoặc x + y = 0
<=>y = 0 hoặc y = -x
b) chia cả 2 vế cho xyz>0 ta được: \(\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}=3\)
không mất tính tổng quát, giả sử: \(x\ge y\ge z\ge1\). Ta có:
\(3=\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}\le\frac{15}{z^3}\Rightarrow z^3\le5\Rightarrow z=1\)
\(z=1\Rightarrow2x+2y+11=3xyz\Rightarrow3=\frac{2}{y}+\frac{2}{x}+\frac{1}{xy}\le\frac{15}{y^2}\Rightarrow y^2\le5\)
\(\Rightarrow\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1;x=1\\y=2;x=\frac{15}{4}\end{cases}}}\)
ĐCĐK và kết luận
Vậy (1;1;13);(13;1;1);(1;13;1)
\(\frac{x+1}{x-3}-\frac{1}{x-1}=\frac{2}{\left(x-1\right)\left(x-3\right)}\left(x\ne1;x\ne3\right)\)
\(\Leftrightarrow\frac{x^2-1}{\left(x-1\right)\left(x-3\right)}-\frac{x-3}{\left(x-1\right)\left(x-3\right)}-\frac{2}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2-1-x+3-2}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Rightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
<=> x=0 hoặc x=1
Vậy x=0; x=1
\(ĐKXĐ:x\ne3;x\ne1\)
\(pt\Leftrightarrow\frac{x^2-1-x+3}{\left(x-3\right)\left(x-1\right)}=\frac{2}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow x^2-1-x+3=2\)
\(\Leftrightarrow x^2-x=0\Leftrightarrow x=0\)(vì x khác 1)
Vậy x = 0