K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

thói quen ưa thích mà :)) coi bộ bạn hiểu sai rồi, vả lại bạn lại đi nhắc thừa cho mình, tốn công. Có khi là người khác tội nghiệp rồi =))

27 tháng 4 2019

đến cái này mà cũng phải hỏi à =))

6 tháng 8 2019

\(4x^2-4x+3=0\)

\(\Rightarrow4x^2-4x+1+2=0\)

\(\Rightarrow\left(2x-1\right)^2+2=0\)

Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x-1\right)^2+2\ge2\)

\(\Rightarrow\left(2x-1\right)^2=0\)( vô lý )

\(\Rightarrow x\in\varnothing\)

6 tháng 8 2019

\(4x^2-4x+3=0\)

\(\left(2x\right)^2-2.2x.1+1+2=0\)

\(\left(2x-1\right)^2+2=0\)

\(\left(2x-1\right)^2=-2\)

\(\text{Vì }\left(2x-1\right)^2\ge0\forall x\)

\(\text{Mà}\left(2x-1\right)^2=-2\)

\(\Rightarrow\text{Ko có giá trị x thỏa mãn đề bài}\)

22 tháng 4 2017

Có : x2 + 12 > 0 với mọi x

=> 4x - 1 > 0 , -x + 4 > 0 hoặc 4x - 1 < 0 , -x + 4 < 0

=> x > 1/4 , x < 4 hoặc x < 1/4 , x > 4

=>1/4 < x < 4 (thỏa mãn) hoặc 1/4 > x > 4(không thỏa mãn)

Vậy 1/4 < x < 4

23 tháng 10 2021

\(x^2\left(x-5\right)+5-x=0\\ \Rightarrow\left(x-5\right)\left(x^2-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)

NV
23 tháng 10 2021

\(\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)

\(x^2+4x+3=x^2+3x+x+3=\left(x^2+3x\right)+\left(x+3\right)=x\left(x+3\right)+\left(x+3\right)=\left(x+3\right)\left(x+1\right)\)

2 tháng 1 2023

m.n giúp mk câu này vs ạ 

(\(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}+\dfrac{16}{4-x^2}\)) : (\(\dfrac{4}{2-x}-\dfrac{8}{2x-x^2}\))

NV
26 tháng 7 2021

1.

Đặt \(x-2=t\ne0\Rightarrow x=t+2\)

\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)

\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)

2.

Đặt \(x-1=t\ne0\Rightarrow x=t+1\)

\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)

\(C_{max}=2\) khi \(t=3\) hay \(x=4\)

a) Ta có: \(36x^3-4x=0\)

\(\Leftrightarrow4x\left(9x^2-1\right)=0\)

\(\Leftrightarrow x\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=\dfrac{-1}{3}\end{matrix}\right.\)

b) Ta có: \(3x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)

19 tháng 8 2020

Ta có : \(x^2+x+4=x^2+x+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)

+) \(\left(x-1\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

19 tháng 8 2020

\(\left(x-1\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+x=-4\end{cases}}\)

+) x2 + x = - 4

<=> ( x + 1/2 )2 = - 4 + 1/4 = -15/4

Mà ( x + 1/2 )2 lớn hơn hoặc bằng 0 với mọi x

=> x2 + x + 4 = 0 ktm

Vậy pt = 0 <=> x = 1

b: Ta có: \(B=-2x^2+4x+1\)

\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)

\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)

\(=-2\left(x-1\right)^2+3\le3\forall x\)

Dấu '=' xảy ra khi x=1

17 tháng 11 2023

\(\dfrac{4x+2}{4x-2}+\dfrac{3-6x}{6x-6}\left(dkxd:x\ne\dfrac{1}{2};x\ne1\right)\)

\(=\dfrac{2\left(2x+1\right)}{2\left(2x-1\right)}+\dfrac{3\left(1-2x\right)}{6\left(x-1\right)}\)

\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2\left(x-1\right)}\)

\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2x-2}\)

\(=\dfrac{\left(2x+1\right)\left(2x-2\right)}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{\left(1-2x\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{4x^2-2x-2}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{4x^2-2x-2-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{2x-3}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{2x-3}{4x^2-6x+2}\)