K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3:

b: x1^2+x2^2=12

=>(x1+x2)^2-2x1x2=12

=>(2m+2)^2-4m=12

=>4m^2+4m+4=12

=>m^2+m+1=3

=>(m+2)(m-1)=0

=>m=1;m=-2

2:

b: =>|x1|-|x2|=m+3-|-1|=m+2

=>x1^2+x2^2-2|x1x2|=m+2

=>(x1+x2)^2-2x1x2-2|x1x2|=m+2

=>(2m)^2-2(-1)-2|-1|=m+2

=>4m^2-m-2=0

=>m=(1+căn 33)/8; m=(1-căn 33)/8

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)

\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+1+\sqrt{3}-1\)

\(=2\sqrt{3}\)

12 tháng 9 2021

mũ 2 với căn lớn bên ngoài sẽ triệt tiêu cho nhau
=\(\sqrt{3}+1+1-\sqrt{3}=2\)

15 tháng 11 2023

loading...  loading...  loading...  

26 tháng 1 2022

 ĐKXĐ a>0 \(a\ne4,a\ne\dfrac{1}{9}\)\(P=\left(\dfrac{a-\sqrt{a}-2\sqrt{a}+2}{3a-6\sqrt{a}-\sqrt{a}+2}-\dfrac{\sqrt{a}-3}{3a-9\sqrt{a}+\sqrt{a}-3}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\right):\left(\dfrac{a+\sqrt{a}}{3\sqrt{a}+1}\right)\)bạn phân tích thành nhân tử và rút gọn cho mẫu thì nó bằng

\(\left(\dfrac{\sqrt{a}-1}{3\sqrt{a-1}}-\dfrac{1}{3\sqrt{a}+1}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\right).\dfrac{3\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{3a+3\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}.\dfrac{3\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}.\dfrac{3\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{3}{3\sqrt{a}-1}\)

để P>\(\dfrac{3}{\left|1-3\sqrt{5}\right|}\)thì \(\dfrac{3}{3\sqrt{a}-1}>\dfrac{3}{3\sqrt{5}-1}\)(vì có dấu giá trị tuyệt đối mà có 1<3\(\sqrt{5}\) nên phải đổi dấu khi ra khỏi ngoặc nhé

=>\(\dfrac{1}{3\sqrt{a}-1}>\dfrac{1}{3\sqrt{5}-1}=>3\sqrt{a}-1< 3\sqrt{5}-1< =>\sqrt{a}< \sqrt{5}< =>a< 25\)

mà ngta muốn gtrij nguyên lớn nhất của a vậy a =24

17 tháng 7 2021

undefined

17 tháng 7 2021

14a) \(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{2}.2+2^2}-\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{2}.2+2^2}\)

\(=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\)

\(=\sqrt{5}+2-\sqrt{5}+2=4\)

b) \(N=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}-\sqrt{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|\)

\(=\sqrt{7}-1-\sqrt{7}-1=-2\)

15a) \(P=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{3^2+2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)

\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

b) \(Q=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{3^2+2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}+\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}=\left|3+2\sqrt{2}\right|+\left|3-2\sqrt{2}\right|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}=6\)

 

5 tháng 8 2021

22,

1, Đặt √(3-√5) = A

=> √2A=√(6-2√5)

=> √2A=√(5-2√5+1)

=> √2A=|√5 -1|

=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)

=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)

2, Đặt √(7+3√5) = B

=> √2B=√(14+6√5)

 => √2B=√(9+2√45+5)

=> √2B=|3+√5|

=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)

=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)

3, 

Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C

=> √2C=√(18+2√17) - √(18-2√17) -\(2\)

=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)

=> √2C=√17+1- √17+1 -\(2\)

=> √2C=0

=> C=0

26,

|3-2x|=2\(\sqrt{5}\)

TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)

3-2x=2\(\sqrt{5}\)

-2x=2\(\sqrt{5}\) -3

x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)

TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)

3-2x=-2\(\sqrt{5}\)

-2x=-2√5 -3

x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)

Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)

 

 

 

 

 

 

6 tháng 8 2021

2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12

3, \(\sqrt{x^2-2x+1}\)=7

⇔ |x-1|=7 

TH1: x-1≥0 ⇔ x≥1

x-1=7 ⇔ x=8 (TMĐK)

TH2: x-1<0 ⇔ x<1

x-1=-7 ⇔ x=-6 (TMĐK)

Vậy x=8, -6

4, \(\sqrt{\left(x-1\right)^2}\)=x+3

⇔ |x-1|=x+3

TH1: x-1≥0 ⇔ x≥1

x-1=x+3 ⇔ 0x=4 (KTM)

TH2: x-1<0 ⇔ x<1

x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)

Vậy x=-1

 

6 tháng 10 2021

a) ĐKXĐ: x >= 1/2

Pt <=> 2x - 1 = 9

<=> x = 5 (thỏa ĐKXĐ)

b) ĐKXĐ: x>=4/3

Pt <=> 6x - 8 = 4

<=> 6x = 12 <=> x = 2 (thỏa ĐKXĐ)

c) ĐKXĐ: x >= 1

Pt <=> sqrt(x-1)=4

<=> x - 1 = 16 <=> x = 17 (thỏa ĐKXĐ)

6 tháng 10 2021

Bn dùng \(\sum\) đi nhé

22 tháng 7 2021

1.

a. Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)

\(BC^2=10^2=100\)

 \(\Rightarrow AB^2+AC^2=BC^2\) \(\Rightarrow\Delta\)ABC vuông tại A

b. \(\Delta\)ABC vuông tại A, đường cao AH. Ta có:

AB.AC = AH.BC

hay 6.8 = AH.10

=> AH = \(\dfrac{6.8}{10}=4.8\)