![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đừng lạm dụng mạng quá bạn ạ, mình không có ý gì, chỉ mong bạn suy nghĩ thôi, hi !
đề ko phải là khó ! mỗi bài mk lm tầm 1 câu nha
\(1,4\left(3x-2\right)-3\left(x-4\right)=7x+20\)
\(12x-12-3x+12=7x+20\)
\(12x-12-3x+12-7x-20=0\)
\(2x-20=0\)
\(x=10\)
\(1,\left(4x-3\right)\left(2x-1\right)=\left(x-3\right)\left(4x-3\right)\)
\(8x^2-10x+3=4x^2-15x+9\)
\(8x^2-10x+3-4x^2+15x-9=0\)
\(4x^2+5x-6=0\)
\(4x\left(x+2\right)-3\left(x+2\right)=0\)
\(\left(4x-3\right)\left(x+2\right)=0\)
\(\left[{}\begin{matrix}4x=3\\x=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\frac{3}{4}\\x=-2\end{matrix}\right.\)
\(1,6x^2-5x+3=2x-3x\left(3-2x\right)\)
\(6x^2-5x+3=2x-9x+6x^2\)
\(6x^2-5x+3-2x+9x-6x^2=0\)
\(2x+3=0\)
\(x=-\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\) với mọi số thực x
b/ \(A=\left(x-1\right)\left(x-3\right)+11=x^2-4x+14=\left(x^2-4x+4\right)+10=\left(x-2\right)^2+10\ge10\)
Suy ra Min A = 10 <=> x = 2
\(B=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)
Đặt \(t=x^2+3x\) thì \(B=t^2-1\ge-1\)
Do đó Min B = -1 <=> t = 0 <=> \(\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)
c/\(C=5-4x^2+4x=-\left(4x^2-4x+1\right)+6=-\left(2x-1\right)^2+6\le6\)
Suy ra Max C = 6 <=> x = 1/2
\(D=-x^2-4x-y^2+2y=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)
\(=-\left(x+2\right)^2-\left(y-1\right)^2+5\le5\)
Suy ra Max D = 5 <=> (x;y) = (-2;1)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 85.12,7+5.3.12,7 c, 37,5.6,5-7,5.3,4-6,6.7,5+3,5.37,5
=12,7.(85+5.3) =37,5.(6,5+3,5)-7,5.(3,4+6,6)
=12,7.(85+15) =37,5.10-7,5.10
=12,7.100 =375-75
=127 =300
b, 52.143-52.39-8.26
=52.(143-39)-8.26
=52.104-8.26
=52.4.26-8.26
=26.(52.4-8)
=26.(208-8)
=26.200
=5200
![](https://rs.olm.vn/images/avt/0.png?1311)
\(E=4x-x^2+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\)
Vì: \(-\left(x-2\right)^2\le0\)
=> \(-\left(x-2\right)^2+5\le5\)
Vậy GTLN của E là 5 khi x=2
\(F=-x^2+3x+2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\)
Vì: \(-\left(x-\frac{3}{2}\right)^2\le0\)
=> \(-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)
Vậy GTLN của F là \(\frac{17}{4}\) khi \(x=\frac{3}{2}\)
\(G=3-10x^2-4xy-4y^2=-\left(x^2+4xy+4y^2\right)-9x^2+3=-\left(x-2y\right)^2-9x^2+3\)
Vì: \(-\left(x-2y\right)^2-9x^2\le0\)
=> \(-\left(x-2y\right)^2-9x^2+3\le3\)
Vậy GTLN của G là 3 khi x=y=0
\(H=-x^2-2y^2+2xy-y+1=-\left(x^2-2xy+y^2\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{5}{4}\)
\(=-\left(x-y\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì: \(-\left(x-y\right)^2-\left(y-\frac{1}{2}\right)^2\le0\)
=> \(-\left(x-y\right)^2-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)
Vậy GTLN của H là \(\frac{5}{4}\) khi \(x=y=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn đăng lại cái đề cho mk dễ nhìn được k. Nhìn ngang vầy khó nhìn...
Bài 1.
a)
Vì DE//AC, theo định lý Ta-lét ta có:
\(\frac{BD}{DA}=\frac{ED}{AC}\Leftrightarrow\frac{4}{6}=\frac{5}{x}\\ \Rightarrow x=\frac{5\cdot6}{4}=\frac{15}{2}=7.5\left(cm\right)\)
Vậy \(x=7.5\left(cm\right)\)
b)
Vì DE//AC, theo định lý Ta-lét trong tam giác ta có:
\(\frac{BE}{CE}=\frac{BD}{AD}\Leftrightarrow\frac{x}{6}=\frac{2.5}{4}\\ \Rightarrow x=\frac{2.5\cdot6}{4}=\frac{15}{4}=3.75\left(cm\right)\)
Vậy \(x=3.75\left(cm\right)\)
c)
Vì \(\begin{matrix}MN\perp DE\\DF\perp DE\end{matrix}\Rightarrow\) MN//DF
Vì MN//DF, theo định lý Ta-lét trong tam giác ta có:
\(\frac{EM}{MD}=\frac{MN}{DF}=\frac{EN}{MF}\Leftrightarrow\frac{EM}{12}=\frac{8}{DF}=\frac{10}{x+2}\\ \Rightarrow DF=\frac{8\cdot\left(x+2\right)}{10}=\frac{8x+16}{10}\\ \Rightarrow EM=\frac{8\cdot12}{DF}=\frac{16}{DF}=16:\frac{8x+16}{10}=\frac{160}{8x+16}=\frac{20}{x+2}\\ \Rightarrow x+2=\frac{18\cdot2}{EM}=36:\frac{20}{x+2}=\frac{36x+72}{20}=\frac{9x+18}{5}\\ \Rightarrow x=\frac{9x+18}{5}-2=\frac{9x+18-10}{5}=\frac{9x+8}{5}\\ \Leftrightarrow x-\frac{9x+8}{5}=0\\ \Leftrightarrow\frac{5x-9x-8}{5}=0\\ \Leftrightarrow\frac{-4x-8}{5}=0\\ \Rightarrow-4x-8=0\\ \Rightarrow x=-2\)
Vậy x = -2
Bài 2.
Vì AB//CD, theo định lý Ta-lét trong tam giác ta có:
\(\frac{AD}{DE}=\frac{BC}{CE}\Leftrightarrow\frac{AD}{AE+DE}=\frac{BC}{CE}\\ \Leftrightarrow\frac{2}{3+2}=\frac{BC}{6}\Leftrightarrow\frac{2}{5}=\frac{BC}{6}\\ \Rightarrow BC=\frac{2\cdot6}{5}=\frac{12}{5}=2.4\left(cm\right)\)
Vậy \(BC=2.4\left(cm\right)\)