K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

3/1.4+3/4.7+3/7.10+......+3/40.43

=1/1-1/4+1/4-1/7+1/7-1/10+......+1/40-1/43

triệt tiêu hết cho nhau ta còn:

1/1-1/43=43/43-1/43=42/43

nhớ cho mình nhé

1 tháng 4 2018

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{40.43}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(=1-\frac{1}{43}\)

\(=\frac{42}{43}\)

22 tháng 9 2016

A=3²/1.4+3²/4.7+3²/7.10+...+3²/97.100

A=9/1.4+9/4.7+9/7.10+...+9/97.100

A=9x(1/1.4+1/4.7+1/7.10+...+1/97.100)

A=9x(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)

A=9x(1-1/100)

A=9x99/100

A=9x33/100

A=297/10=2,97

8 tháng 8 2018

Làm từng phần nha bạn

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{298\cdot301}+x=\frac{299}{301}\)

Đặt \(A+x=\frac{299}{301}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{298}-\frac{1}{301}\)

\(A=1-\frac{1}{301}\)

\(A=\frac{300}{301}\)

=> \(\frac{300}{301}+x=\frac{299}{301}\)

\(x=\frac{299-300}{301}\)

\(x=-\frac{1}{301}\)

8 tháng 8 2018

\(A=5\cdot\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{301\cdot304}\right)\)

\(\frac{3A}{5}=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{301\cdot304}\)

\(\frac{3}{5}\cdot A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{301}-\frac{1}{304}\)

\(\frac{3}{5}\cdot A=1-\frac{1}{304}\)

\(\frac{3}{5}\cdot A=\frac{303}{304}\)

\(A=\frac{505}{304}\)

11 tháng 2 2018

Ta có :

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}\)

\(=\)\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)

\(=\)\(1-\frac{1}{43}\)

\(=\)\(\frac{42}{43}\)

18 tháng 9 2016

\(A=\frac{9}{1.4}+\frac{9}{4.7}+\frac{9}{7.10}+...+\frac{9}{97.100}\)

\(A=9\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right)\)

\(A=9.\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...-\frac{1}{100}\right)\)

\(A=\frac{9}{3}\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(A=3\left(\frac{99}{100}\right)=\frac{297}{100}\)

3 tháng 8 2018

tớ ko biết

3 tháng 8 2018

S = 3 - \(\frac{3}{100}\)\(\frac{300}{100}-\frac{3}{100}=\frac{297}{100}\)

28 tháng 4 2019

\(s=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{40.43}=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{40}-\frac{1}{43}\)

\(s=1-\frac{1}{43}=\frac{42}{43}\)

chúc bạn học tốt !!!

28 tháng 4 2019

Ko hiểu lắm

9 tháng 5 2017

\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+....+\frac{3^2}{97.100}\)

\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{97.100}\right)\)

\(A=3.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=3.\left(\frac{1}{1}-\frac{1}{100}\right)=3-\frac{3}{100}=\frac{297}{100}\)

9 tháng 5 2017

\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)

\(A=\frac{3}{1}-\frac{3}{4}+\frac{3}{4}-\frac{3}{7}+\frac{3}{7}-\frac{3}{10}+\frac{3}{10}-\frac{3}{13}+\frac{3}{13}-\frac{3}{16}+...+\frac{3}{97}-\frac{3}{100}\)

\(A=\frac{3}{1}-\frac{3}{100}\)

\(A=\frac{297}{100}\)

13 tháng 3 2018

S = 3/1 . 4 + 3/4 . 7 + 3/7 . 10 + ...+ 3/n . ( n + 3 ) 

S = 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ...+ 1/n - 1/n + 3 

S = 1 - 1/n + 3  < 1 

S < 1 ( Đpcm ) 

Tham khảo nha !!! 

13 tháng 3 2018

\(S=\frac{3}{1.4}+\frac{3}{4.7} +\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

\(S=1-\frac{1}{n+3}=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+2}{n+3}< 1\)

Vậy S < 1

29 tháng 10 2018

Bài 1:

 Thấy Sn có (n+1) số hạng trong tổng; VD: s100 có 101 số hạng 
* Xét dãy: 2, 3, 4,..., 101 
2+3+4+..+101 = (2+101).100/2 = 5150 là tổng các số hạng của S1, S2, .., S100 
* Dãy 1, 2, 3,.., 5150 rõ ràng có số hạng thứ 5150 là 5150 
nên ta có số hạng cuối cùng trong S100 là 5150 
=> S100 = 5050 + 5051 + 5052 + .. + 5150 (có 101 số hạng) 
S100 = (5050+5150).101/2 = 515100 
~~~~~~~~ 
giải thích cho lớp 5 dễ hiểu!!!!! 
* tính tổng: A = 2+3+4+..+101 
=> A = 101 + 100 + .. + 3+2 
=> 2A = (2+101) + (3+100) + (4+99) +..+(101+2) 
2A = 103 + 103 +..+103 = 103x100 
=> A = 103x100 : 2 = 5150 
* tổng S100 tính tương tự, chú ý là số hạng sau cùng là 5150 thì trước nó 101 số hạng là số 5150 - 100 = 5050 

29 tháng 10 2018

Bài 2:

a) Số hạng thứ I là : 1.6 ; thứ II là : 2.7 ; thứ III là 3.8 => Số hạng thứ n là n(n + 5).Vậy số hạng thứ 50 là : 50.55 = 2750