Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{2}A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)
\(\dfrac{3}{2}A=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{97-94}{94.97}\)
\(\dfrac{3}{2}A=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{97}{94.97}-\dfrac{94}{94.97}\)
\(\dfrac{3}{2}A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)
\(\dfrac{3}{2}A=1-\dfrac{1}{97}=\dfrac{96}{97}\)
⇒ A = \(\dfrac{96}{97}:\dfrac{3}{2}=\dfrac{64}{97}\)
Câu B cách làm tương tự, thắc mắc gì bạn cứ hỏi nhé.
a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)
\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)
\(...\)
\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)
Vậy ta có biểu thức:
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)
Vậy B < 1 (đpcm)
Giải:
a) Ta có:
1/22=1/2.2 < 1/1.2
1/32=1/3.3 < 1/2.3
1/42=1/4.4 < 1/3.4
1/52=1/5.5 < 1/4.5
1/62=1/6.6 < 1/5.6
1/72=1/7.7 < 1/6.7
1/82=1/8.8 <1/7.8
⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
B<1/1-1/8
B<7/8
mà 7/8<1
⇒B<7/8<1
⇒B<1
b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46
S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=45/46
Vì 45/46<1 nên S<1
Vậy S<1
Chúc bạn học tốt!
3 câu đầu bn Võ Quang Huy lm đúng nhưng câu cuối là bằng -22 nhé bn
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{3}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{7}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{15}{16}+\frac{1}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{31}{32}+\frac{1}{64}\)
\(\rightarrow A=\frac{63}{64}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\Rightarrow64A=32+16+8+4+2+1\Rightarrow64A=63\Rightarrow A=\frac{63}{64}\)
830 = (83)10 = 51210
3220 = (322)10 = 102410
Vì 512 < 1024 nên 51210 < 102410
Vậy 830 < 3220
\(\left(32^8.11-32^3.32^5\right):32^7\)
\(=\left(32^8.11-32^8\right):32^7\)
\(=\left[32^8.\left(11-1\right)\right]:32^7\)
\(=\left[32^8.10\right]:32^7\)
\(=\frac{32^8}{32^7}.\frac{10}{32^7}\)
\(=\frac{32.10}{32^7}\)
\(=\frac{10}{32^6}\)
A=3²/1.4+3²/4.7+3²/7.10+...+3²/97.100
A=9/1.4+9/4.7+9/7.10+...+9/97.100
A=9x(1/1.4+1/4.7+1/7.10+...+1/97.100)
A=9x(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100)
A=9x(1-1/100)
A=9x99/100
A=9x33/100
A=297/10=2,97