K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2020

\(\hept{\begin{cases}x^2+2xy+y^2=4\left(1\right)\\-x^2+xy+2y^2=0\left(2\right)\end{cases}}\)\(< =>\hept{\begin{cases}x^2+2xy+y^2=4\left(3\right)\\x^2+2xy+2y^2=2x^2+xy\left(4\right)\end{cases}}\)

Lấy pt 1  cộng pt 2 có : \(3xy+3y^2=4\)

Lấy pt 4 trừ pt 3 có : \(y^2=2x^2+xy-4< =>4=2x^2+xy-y^2\)

\(< =>2x^2+3xy+3y^2-2xy-4y^2=4\)

\(< =>2x^2-2xy-4y^2=0\)

\(< =>x=y-4y^2\)\(< =>x=y\left(1-4y\right)\)

14 tháng 5 2020

bài này bạn chỉ cần sd hđt là xong nhé :)) ko cần dài dòng như mình

28 tháng 6 2020

\(HPT\left\{{}\begin{matrix}2x^2+xy+y^2-x=5\\4x^2+2xy+2y^2-y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+2xy+2y^2-2x=10\\4x^2+2xy+2y^2-y=4\end{matrix}\right.\)

Trừ vế cho vế, ta được :

\(-2x+y=6\)

\(\Leftrightarrow x=\frac{y-6}{2}\)

Thay \(x=\frac{y-6}{2}\) vào hệ phương trình, ta được :

\(2\left(\frac{y-6}{2}\right)^2+\left(\frac{y-6}{2}\right)y+y^2-\frac{y-6}{2}=5\)

\(\Leftrightarrow\frac{y^2-12y+36}{2}+\frac{y^2-6y}{2}+y^2-\frac{y-6}{2}=5\)

\(\Leftrightarrow y^2-12y+36+y^2-6y+2y^2-y+6=10\)

\(\Leftrightarrow4y^2-19y+32=0\)

\(\Leftrightarrow\)\(4\left(y^2-\frac{19}{8}\right)^2+\frac{1687}{64}=0\left(ktm\right)\)

Vậy \(\left(x;y\right)\in\varnothing\)

P/s: Chắc mình làm sai rồi :< check hộ nhé

28 tháng 6 2020

đúng mòi

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

1.

HPT  \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)

Vậy.............

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

2.

ĐKXĐ: $x\in\mathbb{R}$

$x^2+x-2\sqrt{x^2+x+1}+2=0$

$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$

$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$

$\Rightarrow \sqrt{x^2+x+1}=1$

$\Rightarrow x^2+x=0$

$\Leftrightarrow x(x+1)=0$

$\Rightarrow x=0$ hoặc $x=-1$

NV
23 tháng 10 2021

a.

\(2x^3-x^2y+x^2+y^2-2xy-y=0\)

\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)

Thế vào pt đầu:

\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

 

NV
23 tháng 10 2021

b.

\(x^2-2xy+x=-y\)

Thế vào \(y^2\) ở pt dưới:

\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)

\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)

\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)

\(\Leftrightarrow-2y+4y^2-8y+4=0\)

\(\Leftrightarrow...\)

NV
13 tháng 1 2021

\(y\left(x+1\right)^2=-x^2+2018x-1\)

\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)

\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)

Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau

\(\Rightarrow2020⋮\left(x+1\right)^2\)

Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)

 

NV
13 tháng 1 2021

b.

Từ pt đầu:

\(x^2+xy-2y^2+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)

Thế xuống dưới ...

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Ta có:

\(\left\{\begin{matrix} 2xy+y+2=-8x\\ x^2y^2+xy+1=7x^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2(xy+1)=-(8x+y)\\ (xy+1)^2=7x^2+xy\end{matrix}\right.\)

\(\Rightarrow \left[\frac{-(8x+y)}{2}\right]^2=7x^2+xy\)

\(\Leftrightarrow 64x^2+y^2+16xy=28x^2+4xy\)

\(\Leftrightarrow 36x^2+y^2+12xy=0\)

\(\Leftrightarrow (6x+y)^2=0\Rightarrow y=-6x\)

Thay vào pt đầu tiên suy ra:

\(-6x^2+x+1=0\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\rightarrow y=-3\\ x=\frac{-1}{3}\Rightarrow y=2\end{matrix}\right.\)

Vậy...........