\(\left\{{}\begin{matrix}x^2+2xy+2y^2=9\\2y^2+2xy+y^2=2\end{matrix}\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Ta có:

\(\left\{\begin{matrix} 2xy+y+2=-8x\\ x^2y^2+xy+1=7x^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2(xy+1)=-(8x+y)\\ (xy+1)^2=7x^2+xy\end{matrix}\right.\)

\(\Rightarrow \left[\frac{-(8x+y)}{2}\right]^2=7x^2+xy\)

\(\Leftrightarrow 64x^2+y^2+16xy=28x^2+4xy\)

\(\Leftrightarrow 36x^2+y^2+12xy=0\)

\(\Leftrightarrow (6x+y)^2=0\Rightarrow y=-6x\)

Thay vào pt đầu tiên suy ra:

\(-6x^2+x+1=0\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\rightarrow y=-3\\ x=\frac{-1}{3}\Rightarrow y=2\end{matrix}\right.\)

Vậy...........

28 tháng 6 2020

\(HPT\left\{{}\begin{matrix}2x^2+xy+y^2-x=5\\4x^2+2xy+2y^2-y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+2xy+2y^2-2x=10\\4x^2+2xy+2y^2-y=4\end{matrix}\right.\)

Trừ vế cho vế, ta được :

\(-2x+y=6\)

\(\Leftrightarrow x=\frac{y-6}{2}\)

Thay \(x=\frac{y-6}{2}\) vào hệ phương trình, ta được :

\(2\left(\frac{y-6}{2}\right)^2+\left(\frac{y-6}{2}\right)y+y^2-\frac{y-6}{2}=5\)

\(\Leftrightarrow\frac{y^2-12y+36}{2}+\frac{y^2-6y}{2}+y^2-\frac{y-6}{2}=5\)

\(\Leftrightarrow y^2-12y+36+y^2-6y+2y^2-y+6=10\)

\(\Leftrightarrow4y^2-19y+32=0\)

\(\Leftrightarrow\)\(4\left(y^2-\frac{19}{8}\right)^2+\frac{1687}{64}=0\left(ktm\right)\)

Vậy \(\left(x;y\right)\in\varnothing\)

P/s: Chắc mình làm sai rồi :< check hộ nhé

28 tháng 6 2020

đúng mòi

9 tháng 8 2018

có pt (1) \(\Leftrightarrow\left(x^2+xy\right)^2=2x+9\Leftrightarrow\left(6x+6\right)^2=2x+9\)

đây là pt bậc 2 thì dễ rồi nhá !

NV
26 tháng 7 2020

a/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-16xy+4y^2=4\\y^2-3xy=4\end{matrix}\right.\)

\(\Rightarrow4x^2-13xy+3y^2=0\)

\(\Leftrightarrow\left(x-3y\right)\left(4x-y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3y\\y=4x\end{matrix}\right.\)

Thay vào pt sau: \(\left[{}\begin{matrix}y^2-3y.y=4\left(vn\right)\\\left(4x\right)^2-3x.4x=4\end{matrix}\right.\)

\(\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1;y=4\\x=-1;y=-4\end{matrix}\right.\)

b/

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-6xy+2y^2=6\\x^2+2xy-2y^2=6\end{matrix}\right.\)

\(\Rightarrow3x^2-8xy+4y^2=0\)

\(\Leftrightarrow\left(x-2y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}x=2y\\x=\frac{2}{3}y\end{matrix}\right.\)

Thay vào pt đầu: \(\left[{}\begin{matrix}2\left(2y\right)^2-3.2y.y+y^2=3\\2\left(\frac{2}{3}y\right)^2-3.\frac{2}{3}y.y+y^2=3\end{matrix}\right.\) bạn tự giải nốt