\(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi

6 tháng 2 2020

Ta lấy pt thứ 2 cộng 2 lần với pt thứ nhất ta được:

\(x^2+2xy+y^2+4x-4y+4=0\)

Hay: \(\left(x-y+2\right)^2=0\)

Ta suy ra \(y=x+2\). Thay trở lại pt thứ nhất của hệ ta được:

\(x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)

Trương đương với: \(x^2+5x+1=0\)

Vì vậy có nghiệm: \(x=\frac{-5\pm\sqrt{21}}{2}\).

Do đó: \(y=x+2=\frac{-1\pm\sqrt{21}}{2}\)

Vậy hệ pt đã cho có 2 nghiệm \(\left(x,y\right)=\left(\frac{-5+\sqrt{21}}{2};\frac{-1+\sqrt{21}}{2}\right);\left(\frac{-5-\sqrt{21}}{2};\frac{-1-\sqrt{21}}{2}\right)\)

NV
20 tháng 11 2019

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)

\(\Rightarrow x^2+y^2-2xy+4\left(x-y\right)+4=0\)

\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)

\(\Leftrightarrow\left(x-y+2\right)^2=0\)

\(\Rightarrow y=x+2\)

\(\Rightarrow x^2-2x\left(x+2\right)+x-2\left(x+2\right)+3=0\)

\(\Leftrightarrow...\)

1 tháng 1 2018

1. Đề này là 18 chứ không phải 15 nhé

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) và (1) - (2) ta được hệ mới

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)

\(\Rightarrow x=8-y\)

\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)

1 tháng 1 2018

2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình

HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) ; (1) - (2) ta được

\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)

Lấy ( 3) nhân (4)

\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)

\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)

\(\Rightarrow y=3x\)

đến đây thì dễ rồi