Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x^3+2=3\sqrt[3]{3x-2}\Leftrightarrow x^3+3x=\left(3x-2\right)+3\sqrt[3]{3x-2}\)
Đặt \(\sqrt[3]{3x-2}=a\)thì \(x^3+3x=a^3+3a\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left[\frac{1}{2}x^2+\frac{1}{2}a^2+\frac{1}{2}\left(x+a\right)^2+3\right]=0\)
\(\Leftrightarrow x=a\Leftrightarrow.......\)
2.
\(x^2+\sqrt{x+5}=5\)\(\Leftrightarrow x^2+x+\frac{1}{4}=x+5-\sqrt{x+5}+\frac{1}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\sqrt{x+5}-\frac{1}{2}\right)^2\)\(\Leftrightarrow..........\)
3. Các hệ đối xứng như vầy, chỉ cần trừ theo vế 2 phương trình của hệ cho nhau để rút ra nhân tử chung.
a.
\(pt\left(1\right)-pt\left(2\right)\Leftrightarrow x^3-y^3=3x+8y-\left(3y+8x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-xy+y^2\right)+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\frac{1}{2}x^2+\frac{1}{2}y^2+\frac{1}{2}\left(x+y\right)^2+5\right]=0\)
\(\Leftrightarrow x=y\text{ }\left(do\text{ }.....................................>0\right)\)
thay vào một trong hai phương trình ban đầu giải nốt
b.
\(pt\left(1\right)-pt\left(2\right)\Leftrightarrow2x+y-\left(2y+x\right)=\frac{3}{x^2}-\frac{3}{y^2}\)
\(\Leftrightarrow x-y+\frac{3}{x^2y^2}\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[1+\frac{3\left(x+y\right)}{x^2y^2}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\text{ (3)}\\1+\frac{3\left(x+y\right)}{x^2y^2}=0\text{ (4)}\end{cases}}\)
Ta cần CM (4) làm hệ vô nghiệm
Từ pt(1) ta có: \(\frac{3}{x^2}>0\Rightarrow2x+y>0\)
Tương tự với pt(2) \(\frac{3}{y^2}>0\Rightarrow x+2y>0\)
Cộng theo vế: \(2x+y+x+2y>0\Rightarrow3\left(x+y\right)>0\)
Vậy \(1+\frac{3\left(x+y\right)}{x^2y^2}>0\) hay (4) bị loại.
Vậy (3) vào một phương trình đã cho giải nốt.
Lời giải:
Ta có: \(\left\{\begin{matrix} (xy+1)(2y-x)=2x^3y^2\\ x^2y^2+1=2y^2\end{matrix}\right.\Rightarrow (xy+2y^2-x^2y^2)(2y-x)=2x^3y^2\)
\(\Leftrightarrow y[(x+2y-x^2y)(2y-x)-2x^3y]=0\)
Hiển nhiên \(y\neq 0\) , do đó \((x+2y-x^2y)(2y-x)=2x^3y\)
\(\Leftrightarrow -x^2+4y^2-2x^2y^2+x^3y=2x^3y\)
\(\Leftrightarrow -x^2+4y^2=x^3y+2x^2y^2\)
\(\Leftrightarrow (2y+x)(2y-x-x^2y)=0\)
TH1: \(2y+x=0\rightarrow x=-2y\)
Thay vào PT $(2)$ suy ra \(4y^4+1=2y^2\leftrightarrow 3y^4+(y^2-1)^2=0\) (vô nghiệm)
TH2: \(2y-x=x^2y\) thay vào PT $(1)$ suy ra
\((xy+1)x^2y=2x^3y^2\leftrightarrow x^2y(xy+1-2xy)=x^2y(1-xy)=0\)
Vì \(y\neq 0\rightarrow \) \(x=0\) hoặc \(xy=1\)
\(\bullet\) \(x=0\rightarrow \text{PT(1)}\rightarrow y=0 \) (vl)
\(xy=1\)\(\Rightarrow \text{PT(2)}\rightarrow y=\pm 1\rightarrow x=\pm 1\) (thử lại thấy đúng)
Vậy \((x,y)=(-1,-1),(1,1)\)
\(\hept{\begin{cases}x^3+1=2y\left(1\right)\\y^3+1=2x\left(2\right)\end{cases}}\) Lấy (1) trừ (2) theo vế ta được :
\(x^3+1-y^3-1=2y-2x\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)=-2\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\)
=> \(x-y=0\)hoặc \(x^2+xy+y^2+2=0\)
Ta có : \(x^2+xy+y^2+2=0\Leftrightarrow2x^2+2xy+2y^2+4=0\Leftrightarrow\left(x+y\right)^2+x^2+y^2+4=0\)
Vì \(\left(x+y\right)^2+x^2+y^2+4\ge4>0\). Do đó dấu đẳng thức không xảy ra.
Ta xét x = y thay vào (1) được : \(x^3+1=2x\)
Giải phương trình trên ta được : \(x=1\)hoặc \(x=-\frac{1}{2}-\frac{\sqrt{5}}{2}\) hoặc \(x=-\frac{1}{2}+\frac{\sqrt{5}}{2}\)
Vậy : Nghiệm của hệ là : \(\left(x;y\right)=\left(1;1\right);\left(-\frac{1}{2}-\frac{\sqrt{5}}{2};-\frac{1}{2}-\frac{\sqrt{5}}{2}\right);\left(-\frac{1}{2}+\frac{\sqrt{5}}{2};-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)\)
chuyển vế t đc hệ pt
x^3 -2y+1=0
y^3-2x+1=0
rồi hạ bậc xuống giải bt nhé
\(x^3-16x=y\left(y^2-4\right)\) \(\left(1\right)\)
\(5x^2=y^2-4\) \(\left(2\right)\)
\(\Rightarrow x^3-16x=y.5x^2\Leftrightarrow x\left(x^2-5yx-16\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-5yx-16=0\)
+ \(x=0\Rightarrow y^2-4=5.0=0\Rightarrow y=2\) hoặc \(y=-2\)
Thế lại vào \(\left(1\right)\) thấy thỏa, ta được 2 nghiệm \(\left(x,y\right)=\left(0;2\right),\left(0;-2\right)\)
+\(x^2-5yx-16=0\) và \(x\ne0\)
\(\Rightarrow y=\frac{x^2-16}{5x}=\frac{x}{5}-\frac{16}{5x}\)
Thế y vào \(\left(2\right)\) ta được
\(5x^2=\left(\frac{x}{5}-\frac{16}{5x}\right)^2-4\Leftrightarrow125x^2=\left(x-\frac{16}{x}\right)^2-100\Leftrightarrow125x^2=x^2+\frac{256}{x^2}-32-100\)
\(\Leftrightarrow124x^2+132-\frac{256}{x^2}=0\)\(\Leftrightarrow124x^4+132x^2-256=0\)
\(\Leftrightarrow4\left(x^2-1\right)\left(31x^2+64\right)=0\)\(\Leftrightarrow x^2=1\Leftrightarrow x=1\) hoặc \(x=-1\)
\(x=1\Rightarrow y=\frac{1}{5}-\frac{16}{1.5}=-3\)
\(x=-1\Rightarrow y=\frac{1}{-5}-\frac{16}{-5}=3\)
Thử các cặp \(\left(x,y\right)=\left(1;-3\right),\left(-1;3\right)\) vào hệ thấy thỏa mãn.
Vậy: hệ có 4 nghiệm \(\left(x,y\right)=\left(0;2\right),\left(0;-2\right);\left(1;-3\right);\left(-1;3\right)\)