Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)
Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Hệ pt \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2+y^2=1\\\left(x-2\right)^3+y^2=1\end{cases}}\) Đặt a=x-2 hệ trở thành \(\hept{\begin{cases}a^2+y^2=1\\a^2+y^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-1\le a,y\le1\\a^2+y^2=a^3+y^3\end{cases}\Leftrightarrow\hept{\begin{cases}-1\le a;y\le1\left(1\right)\\a^2\left(1-a\right)+y^2\left(1-y\right)=0\left(2\right)\end{cases}}}\)
Từ (1) => (2) có \(VT\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a^2\left(1-a\right)=y^2\left(1-y\right)=0\)
Kết hợp \(a^2+y^2=1\)ta có \(\hept{\begin{cases}a=0\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=1\\y=0\end{cases}}\)
Thay vào ta có nghiệm \(\hept{\begin{cases}x=2\\y=1\end{cases};\hept{\begin{cases}x=3\\y=0\end{cases}}}\)
=> x^2 +6x-8=4x+7
=> x^2+2x-15=0
=> x^2+2.x.1+1-16=0
=> (x+1)^2=4^2
=> x+1=4 hoặc x+1=-4
=> x=3 hoặc x=-5
+, x=3 => y=-17
+, x=-5=> y= -13