Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ pt \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2+y^2=1\\\left(x-2\right)^3+y^2=1\end{cases}}\) Đặt a=x-2 hệ trở thành \(\hept{\begin{cases}a^2+y^2=1\\a^2+y^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}-1\le a,y\le1\\a^2+y^2=a^3+y^3\end{cases}\Leftrightarrow\hept{\begin{cases}-1\le a;y\le1\left(1\right)\\a^2\left(1-a\right)+y^2\left(1-y\right)=0\left(2\right)\end{cases}}}\)
Từ (1) => (2) có \(VT\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow a^2\left(1-a\right)=y^2\left(1-y\right)=0\)
Kết hợp \(a^2+y^2=1\)ta có \(\hept{\begin{cases}a=0\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=1\\y=0\end{cases}}\)
Thay vào ta có nghiệm \(\hept{\begin{cases}x=2\\y=1\end{cases};\hept{\begin{cases}x=3\\y=0\end{cases}}}\)
\(\hept{\begin{cases}x^2+y^2+3=4x\\x^3+12x+y^3=6x^2+9\end{cases}}\)
<=> \(\hept{\begin{cases}x^2-4x+4=1-y^2\\x^3-6x^2+12x-8=1-y^3\end{cases}}\)
<=> \(\hept{\begin{cases}\left(x-2\right)^2=1-y^2\\\left(x-2\right)^3=1-y^3\end{cases}}\)
Đặt x - 2 = u
ta có: \(\hept{\begin{cases}u^2+y^2=1\left(1\right)\\u^3+y^3=1\left(2\right)\end{cases}}\)
(1)(2) => \(0\le u,y\le1\)
=> \(u^2\left(1-u\right)+y^2\left(1-y\right)\ge0\)
Lấy (1) -(2) có: \(u^2\left(1-u\right)+y^2\left(1-y\right)=0\)
<=> u = 0; y =1 hoặc u = 1; y = 0
=> x ; y.
a) đặt \(\sqrt{x+6}=a\ge0\)
\(\sqrt{x-2}=b\ge0\)
Ta có: \(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=8\\a^2-b^2=8\end{cases}}\)
\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab-a-b+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
Đến đây tự làm nhé
cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)