\(\left\{{}\begin{matrix}x\left(x+y+z\right)+yz=238\\y\left(x+y+z\right)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

25 tháng 5 2018

Ta có \(\hept{\begin{cases}\text{(x+y)(y+z)=187}\\\text{(y+z)(z+x)=154}\\\text{(z+x)(x+y)=238}\end{cases}}\)\(\Rightarrow\)(x+y)2(y+z)2(z+x)2=187.154.238    \(\Rightarrow\)  (x+y)(y+z)(z+x)=2618

  \(\Rightarrow\)\(\hept{\begin{cases}z+x=14\\x+y=17\\y+z=11\end{cases}}\)   \(\Rightarrow\) 2(x+y+z)=14+17+11=42  \(\Rightarrow\) x+y+z=21   \(\Rightarrow\) \(\hept{\begin{cases}y=7\\z=4\\x=10\end{cases}}\)

25 tháng 5 2018

đặt x+y=a,y+z=b,z+y=c

hPt trở thành :ab=187,bc=154,ca=238

nhân hết 3 vế với nhau:\(a^2b^2c^2=6853924\)

 Suy ra \(abc=2613\)nên c=abc:ab=2613:187=14.b và c tính tương tự

trở về ẩn cũ r giải nốt đi

28 tháng 1 2019

ta có : x+xy+y=1

<=> x(y+1) + (y+1)=2

<=> (x+1)(y+1)=2

tương tự(y+1)(z+1)=5

(x+1)(z+1)=10

ta đc hệ pt............

đặt x+1=a,y+1=b,z+1=c

ta có : ab=2 (1) , bc=5 (2) , ac=10

=> abc=2c , abc=5a , abc= 10b

=> 5a=10b=2c

+ 5a=10b

=> a=2b . (1)=> 2b^2=1=> b=1 hoặc b=-1

=> a=2 hoăc a=-2 . (2)=> c=5 hoăc c=-5

like nha :))

23 tháng 10 2017

\(hpt\Leftrightarrow\left\{{}\begin{matrix}x+y+xy+1=4\\y+z+yz+1=2\\x+z+xz+1=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=2\\\left(x+1\right)\left(z+1\right)=2\end{matrix}\right.\)

Lấy \(\dfrac{pt\left(2\right)}{pt\left(3\right)}\Leftrightarrow\dfrac{y+1}{x+1}=1\)\(\Leftrightarrow y+1=x+1\)\(\Leftrightarrow x=y\)

Thay vào \(pt(1)\)\(\Leftrightarrow x^2+2x=3\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=y=1\\x=y=-3\end{matrix}\right.\)

Thay vào \(pt\left(3\right)\)\(\Leftrightarrow\left[{}\begin{matrix}z+1+z=1\\z-3-3z=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}z=0\\z=-2\end{matrix}\right.\)

Vậy....