K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

2. \(x+y+xy=-1\)

<=>  \(x+xy+y+1=0\)

<=>  

24 tháng 5 2017

\(x\left(y+1\right)+\left(y+1\right)=0\)

\(\left(y+1\right)\left(x+1\right)=0\)

\(\orbr{\begin{cases}y+1=0\\x+1=0\end{cases}}\)<=>\(\orbr{\begin{cases}y=-1\\x=-1\end{cases}}\)

7 tháng 8 2017

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

ĐK: \(x\ge0\)

\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)

7 tháng 8 2017

ai giải hộ mk ý a vs ý c

21 tháng 7 2015

\(pt\text{ (2)}\Leftrightarrow\left(y-1\right)\left(y+x-2\right)=0\Leftrightarrow y=1\text{ hoặc }y=2-x\)

Lần lượt thay từng trường hợp vào phương trình đầu giải tiếp.

AH
Akai Haruma
Giáo viên
25 tháng 7 2017

Lời giải:

Ta có: \(\left\{\begin{matrix} (xy+1)(2y-x)=2x^3y^2\\ x^2y^2+1=2y^2\end{matrix}\right.\Rightarrow (xy+2y^2-x^2y^2)(2y-x)=2x^3y^2\)

\(\Leftrightarrow y[(x+2y-x^2y)(2y-x)-2x^3y]=0\)

Hiển nhiên \(y\neq 0\) , do đó \((x+2y-x^2y)(2y-x)=2x^3y\)

\(\Leftrightarrow -x^2+4y^2-2x^2y^2+x^3y=2x^3y\)

\(\Leftrightarrow -x^2+4y^2=x^3y+2x^2y^2\)

\(\Leftrightarrow (2y+x)(2y-x-x^2y)=0\)

TH1: \(2y+x=0\rightarrow x=-2y\)

Thay vào PT $(2)$ suy ra \(4y^4+1=2y^2\leftrightarrow 3y^4+(y^2-1)^2=0\) (vô nghiệm)

TH2: \(2y-x=x^2y\) thay vào PT $(1)$ suy ra

\((xy+1)x^2y=2x^3y^2\leftrightarrow x^2y(xy+1-2xy)=x^2y(1-xy)=0\)

\(y\neq 0\rightarrow \) \(x=0\) hoặc \(xy=1\)

\(\bullet\) \(x=0\rightarrow \text{PT(1)}\rightarrow y=0 \) (vl)

\(xy=1\)\(\Rightarrow \text{PT(2)}\rightarrow y=\pm 1\rightarrow x=\pm 1\) (thử lại thấy đúng)

Vậy \((x,y)=(-1,-1),(1,1)\)

9 tháng 6 2015

pt thứ (1) <=>   x+ y2  = 1 - xy

pt thứ (2) <=> (x+y)(x+ y2 - xy) = x+ 3y

Thế pt (1) vào Pt (2) ta được

(x+y).(1 - 2xy) = x + 3y

<=> x - 2x2y + y - 2xy2 = x + 3y

<=> -2xy. (x+y) - 2y = 0 

<=> y. (1 + x(x+y)) = 0

<=> y = 0 hoặc x.(x+y) = - 1

+) y = 0 => x2 = 1 => x = 1 hoặc x = -1

Từ pt thứ 2 => x3= x => x = 0 hoặc x = 1 hoặc x = -1

Vậy x = 1; y = hoặc x = -1 và y = 0

+) x.(x+y)  = - 1 => x2 + xy = -1. Từ pt thứ 1

=> y2 - 1 = 1 <=> y2 = 2 => y = \(\sqrt{2}\) hoặc y = - \(\sqrt{2}\)

Thay y = \(\sqrt{2}\) vào x(x+y) = -1 => x=.....

27 tháng 1 2018

1/x+1/y+1/2xy=1/2

Tìm nghiệm tự nhiên

11 tháng 6 2020

Ta có: 

\(\hept{\begin{cases}x^2+y^2+2y=4\\2x+y+xy=4\end{cases}}\)

<=> \(\hept{\begin{cases}x^2+y^2+2y=4\\4x+2y+2xy=8\end{cases}}\)

=>\(x^2+y^2+4y+4x+2xy-12=0\)

<=> \(\left(x+y\right)^2+4\left(x+y\right)-12=0\)

<=> \(\orbr{\begin{cases}x+y=2\\x+y=-6\end{cases}}\)

TH1: Với x + y = 2 ta có: y = 2 - x 

Thế vào phương trình (2) ta có: \(2x+2-x+x\left(2-x\right)=4\)

<=> \(x^2-3x+2=0\)<=> x = 2 hoặc x = 1 

Với x = 2 ta có: y = 0 thử lại thỏa mãn 

Với x = 1 ta có: y = 1 thử lại thỏa mãn 

+) TH2: Với x + y =- 6 ta có: y = -6 - x 

Thế vào phương trình (2) ta có: \(2x-6-x+x\left(-6-x\right)=4\)

<=> \(x^2+5x+10=0\)phương trình vô nghiệm 

Vậy:...

10 tháng 8 2016

1/ đặt x+y = a

xy=b

Ta có a(a2 - 3b) = 19

a(8+b)=2

Dùng phương pháp thế rồi giải tìm được a=1; b=-6

Từ đó ta suy ra x=-2 và y=3 hoặc x=3 và y =-2

10 tháng 8 2016

2/ ta có 3x+4 xy + y= 0 <=> (2x+y)- x = 0 <=> (3x+y)(x+y)=0 từ đó dùng phương pháp thế vào phương trình còn lại là ra