K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2022

để 2n+7/n-1 là số tự nhiên thì 2n+7⋮ n-1 

⇔ 2(n-1) + 9 ⋮ n-1 ⇔ 9⋮ n-1 ⇔ n-1 ϵ { 1;3;9}

⇔ n ϵ { 2; 4;10}

 

8 tháng 5 2015

\(2n+7=\left(n+3\right)+\left(n+4\right)=\left(n+3\right)+\left(n+3\right)+1\)

\(Ta\) \(Co\)\(:\) \(\frac{\left(n+3\right)+\left(n+3\right)+1}{n+3}\)\(=2+\frac{1}{n+3}\)

\(De\) \(\left(2n+7\right)^._:\left(n+3\right)\) \(=>\)\(1chia\vec{ }het\vec{ }cho\vec{ }n+3\)

=>n+3 \(\in U_{\left(1\right)}\)

ta co : \(U_{\left(1\right)}\in\left(1;-1\right)\)

ta co bang :

n+31-1
n-2   -4     

vi n \(\in\)N

=>n khong co gia tri

14 tháng 11 2018

Gọi d là ƯC ( n+1,2n+3)

Suy ra n+1 \(⋮\)d ; 2n +3 \(⋮\)d

n +1\(⋮\)\(\Rightarrow\)2 (n+1)\(⋮\)d

              \(\Rightarrow\)2n +2 \(⋮\)d

Do đó : (2n + 3) -  (2n +2 )\(⋮\)d

2n+3 - 2n -2 \(⋮\)d

1\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư (1)={1}

\(\Rightarrow\)ƯC (n +1 , 2n +3 ) = {1}

\(\Rightarrow\)ƯCLN (n +1, 2n +3 ) =1

Bài sau tương tự nha bn.Chúc bn học tốt !!!

7 tháng 12 2020

a/ \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}.\)

\(2n+7⋮n+1\) khi \(5⋮n+1\) hay n+1 là USC của 5 => n+1={-5;-1;1;5} => n={-6;-2;0;4}

b/

\(2A=2+2^2+2^3+2^4+...2^{2019}\)

\(\Rightarrow A=2A-A=2^{2019}-1\)

=> A, B là 2 số tự nhiên liên tiếp

a, ta có n+2/n-1=n-1+3/n-1(biến đổi tử để giống mẫu)=1+3/n-1

để n+2/n-1 có giá trị nguyên thì n-1 thuộc Ư(3)

ta có bảng:   n-1              1                    3

                       n               2                   4

Vậy 2 STn đó là 2 hoặc 4

b, Gọi d là ƯC(n+1;2n+1)

ta có: n+1/2n+1=2n+2/2n+1

d= (2n+2)-(2n+1)= 1

Hai phân số tối giản khi tử và mẫu là 2 số nguyên tố cùng nhau và có ƯC=1

=) phân số đó tối giản

Xem cách giải mình nhé bạn, đúng thì nhé!

15 tháng 4 2019

Làm ơn nhanh được không ạ? Tớ cần gấp, mai phải nộp cho cô rồi mà h chưa làm xong!

16 tháng 4 2019

Đề câu a thiếu bạn ơi~

Cmr: Với mọi STN n thì 2n + 1 và \(\frac{n\left(n+1\right)}{2}\)là 2 số nguyên tố cùng nhau

Giải :

Gọi d là một ước chung của \(2n+1\)và \(\frac{n\left(n+1\right)}{2}\). Ta có :

\(2n+1⋮d;\frac{n\left(n+1\right)}{2}⋮d\)

\(\Rightarrow n\left(2n+1\right)⋮d;\frac{4.n\left(n+1\right)}{2}⋮d\)

\(\Rightarrow2n^2+1-2n\left(n+1\right)⋮d\)

\(\Rightarrow2n^2+n-2n^2+n^2\)

\(\Rightarrow n⋮d\)

Vì \(n⋮d\Rightarrow2n⋮d\)\(2n+1⋮d\) nên \(1⋮d\)

\(\Rightarrow d=1\)

Vậy với mọi STN n thì 2n + 1 và \(\frac{n\left(n+1\right)}{2}\)là 2 số nguyên tố cùng nhau.

24 tháng 2 2016

bài ta có :   2n+15 chia hết n+1 suy ra 2n+15=n+1+n+1+13chia hết n+1  suy ra n+1 thuộc Ư của 13 suy ra

Ư của 13  =[1,13] suy ra n =[0;12]

                 vay n=[0;12]

29 tháng 9 2015

n2 + 2n + 7 chia hết cho n + 2

=> n(n+2)+7 chia hết cho n+2

Vì n(n+2) chia hết cho n+2

=> 7 chia hết cho n+2

=> n+2 thuộc Ư(7)

n+2n
1-1
-1-3
75
-7-9   

Mà n là số tự nhiên

=> n = 5

29 tháng 9 2015

Ta có : (n^2+2n)+7

=n.(n+2)+7

Vì n.(n+2) chia hết cho n+2 =>n.(n+2)+7 chia hết cho n+2 <=>7 chia hết cho n+2

=>n+2 \(\in\)Ư(7)

=>n+2 \(\in\){-7;-1;1;7}

=>n\(\in\){-9;-3;-1;5}

Vậy khi n\(\in\){-9;-3;-1;5} thì n^2+2n+7 chia hết cho n+2