Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n+7=\left(n+3\right)+\left(n+4\right)=\left(n+3\right)+\left(n+3\right)+1\)
\(Ta\) \(Co\)\(:\) \(\frac{\left(n+3\right)+\left(n+3\right)+1}{n+3}\)\(=2+\frac{1}{n+3}\)
\(De\) \(\left(2n+7\right)^._:\left(n+3\right)\) \(=>\)\(1chia\vec{ }het\vec{ }cho\vec{ }n+3\)
=>n+3 \(\in U_{\left(1\right)}\)
ta co : \(U_{\left(1\right)}\in\left(1;-1\right)\)
ta co bang :
n+3 | 1 | -1 |
n | -2 | -4 |
vi n \(\in\)N
=>n khong co gia tri
Gọi d là ƯC ( n+1,2n+3)
Suy ra n+1 \(⋮\)d ; 2n +3 \(⋮\)d
n +1\(⋮\)d \(\Rightarrow\)2 (n+1)\(⋮\)d
\(\Rightarrow\)2n +2 \(⋮\)d
Do đó : (2n + 3) - (2n +2 )\(⋮\)d
2n+3 - 2n -2 \(⋮\)d
1\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư (1)={1}
\(\Rightarrow\)ƯC (n +1 , 2n +3 ) = {1}
\(\Rightarrow\)ƯCLN (n +1, 2n +3 ) =1
Bài sau tương tự nha bn.Chúc bn học tốt !!!
a/ \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}.\)
\(2n+7⋮n+1\) khi \(5⋮n+1\) hay n+1 là USC của 5 => n+1={-5;-1;1;5} => n={-6;-2;0;4}
b/
\(2A=2+2^2+2^3+2^4+...2^{2019}\)
\(\Rightarrow A=2A-A=2^{2019}-1\)
=> A, B là 2 số tự nhiên liên tiếp
a, ta có n+2/n-1=n-1+3/n-1(biến đổi tử để giống mẫu)=1+3/n-1
để n+2/n-1 có giá trị nguyên thì n-1 thuộc Ư(3)
ta có bảng: n-1 1 3
n 2 4
Vậy 2 STn đó là 2 hoặc 4
b, Gọi d là ƯC(n+1;2n+1)
ta có: n+1/2n+1=2n+2/2n+1
d= (2n+2)-(2n+1)= 1
Hai phân số tối giản khi tử và mẫu là 2 số nguyên tố cùng nhau và có ƯC=1
=) phân số đó tối giản
Xem cách giải mình nhé bạn, đúng thì nhé!
Làm ơn nhanh được không ạ? Tớ cần gấp, mai phải nộp cho cô rồi mà h chưa làm xong!
Đề câu a thiếu bạn ơi~
Cmr: Với mọi STN n thì 2n + 1 và \(\frac{n\left(n+1\right)}{2}\)là 2 số nguyên tố cùng nhau
Giải :
Gọi d là một ước chung của \(2n+1\)và \(\frac{n\left(n+1\right)}{2}\). Ta có :
\(2n+1⋮d;\frac{n\left(n+1\right)}{2}⋮d\)
\(\Rightarrow n\left(2n+1\right)⋮d;\frac{4.n\left(n+1\right)}{2}⋮d\)
\(\Rightarrow2n^2+1-2n\left(n+1\right)⋮d\)
\(\Rightarrow2n^2+n-2n^2+n^2\)
\(\Rightarrow n⋮d\)
Vì \(n⋮d\Rightarrow2n⋮d\) mà \(2n+1⋮d\) nên \(1⋮d\)
\(\Rightarrow d=1\)
Vậy với mọi STN n thì 2n + 1 và \(\frac{n\left(n+1\right)}{2}\)là 2 số nguyên tố cùng nhau.
bài ta có : 2n+15 chia hết n+1 suy ra 2n+15=n+1+n+1+13chia hết n+1 suy ra n+1 thuộc Ư của 13 suy ra
Ư của 13 =[1,13] suy ra n =[0;12]
vay n=[0;12]
n2 + 2n + 7 chia hết cho n + 2
=> n(n+2)+7 chia hết cho n+2
Vì n(n+2) chia hết cho n+2
=> 7 chia hết cho n+2
=> n+2 thuộc Ư(7)
n+2 | n |
1 | -1 |
-1 | -3 |
7 | 5 |
-7 | -9 |
Mà n là số tự nhiên
=> n = 5
Ta có : (n^2+2n)+7
=n.(n+2)+7
Vì n.(n+2) chia hết cho n+2 =>n.(n+2)+7 chia hết cho n+2 <=>7 chia hết cho n+2
=>n+2 \(\in\)Ư(7)
=>n+2 \(\in\){-7;-1;1;7}
=>n\(\in\){-9;-3;-1;5}
Vậy khi n\(\in\){-9;-3;-1;5} thì n^2+2n+7 chia hết cho n+2
để 2n+7/n-1 là số tự nhiên thì 2n+7⋮ n-1
⇔ 2(n-1) + 9 ⋮ n-1 ⇔ 9⋮ n-1 ⇔ n-1 ϵ { 1;3;9}
⇔ n ϵ { 2; 4;10}