K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2014

Hướng Cm nhé!

a) Dùng định lí Pitago:

Cm: AB^2 + AC^2 = BC^2

b) Xét tứ giác AMKN có :

góc A=90*

__ M= 90( KM vuông vs AB)

__ N= 90* ( KN vuông vs AC)

-> điều phải chứng minh

Tính MN:

Tính đường cao AH

Sử dụng tính chất hình chữ nhật đối vs Hình AMKN ( 2 đường chéo bằng nhau)

ta có : AH= MN

c) Xét 2 tam giác: AMN vầCB

-> đưa ra tỉ số AM/ AC = AN/ AB 

-> AM.AB=AN.AC

d) Căn Căn kia thì tớ chịu, lười chả buồn nghĩ =)))

24 tháng 10 2014

Hướng Cm nhé!

a) Dùng định lí Pitago:

Cm: AB^2 + AC^2 = BC^2

b) Xét tứ giác AMKN có :

góc A=90*

__ M= 90( KM vuông vs AB)

__ N= 90* ( KN vuông vs AC)

-> điều phải chứng minh

Tính MN:

Tính đường cao AH

Sử dụng tính chất hình chữ nhật đối vs Hình AMKN ( 2 đường chéo bằng nhau)

ta có : AH= MN

c) Xét 2 tam giác: AMN vầCB

-> đưa ra tỉ số AM/ AC = AN/ AB 

-> AM.AB=AN.AC

d) Căn Căn kia thì tớ chịu, lười chả buồn nghĩ =)))

5 tháng 9 2016

(bn tự vẽ hình)Gọi AH giao EFtại M ,     AI  giao EF tại N

a) xét tứ giác AEHF có: A=E=F=90o(góc)→AEHF là HCN→AM=EM=MH=MF

Ta có: ΔAHF~ΔACH(g.g)→AHF=ACH(góc) mà AHF =HAE (góc)(vì SLT do AE//HF)→ACH=HAE(góc)

Mà MA=ME(cmt)→ΔAME cân ở M→HAE=FEA(góc)  do đó ACH=FEA(góc)

lại có BHE=ACH(góc)(đồng vị )→BHE=FEA(góc)

mặt khác:NAE=90o-FEA(ΔAEN vuông ở N) , B = 90o-BHE(ΔBHE vuông ở E )

→NAE=B(góc)→ΔAIB cân ở I → IB=IA

tương tự ta có :IA=IC

vậy IB=IC→I là trung điểm của BC

b) ta có : sABC=2sAEHF→SABC=4SAEF\(\frac{SAEF}{SABC}=\frac{1}{4}\)mà ΔAEF~ΔACB(cmt)→\(\left(\frac{AF}{AB}\right)^2=\frac{1}{4}\)\(\frac{AF}{AB}=\frac{1}{2}\)

\(\frac{HE}{AB}=\frac{1}{2}\)(AF=HE)

→ΔAHB vuông ở H có đương cao HE=1/2 cạnh huyền→HE là đường trung tuyến của AB →ΔAHB vuông cân ở H→B=45o(góc)

→C=45o(góc) 

vậy ΔABC vuông cân ở A

(câu b lm bừa nhé)

 

11 tháng 8 2016

a, tam giác ABH có: góc  ABH=90 độ,vuông góc với AB 

Suy ra: AM.AB=AH^2(Đ/L)

CMTT tam giác AHC: AN.AC=AH^2(Đ/L)

cả hai diều suy ra:AM.AB=AN.AC

11 tháng 8 2016

phần b nghĩ ra chưa làm nốt cho

16 tháng 8 2017

A B C H N M

hình không đẹp lắm, mong cậu thông cảm.

Có : AH là đường cao của tam giác ABC=> goc AHB =900

Tam giác AHB vuông tại H có AM là đường cao

=> AM.AB = AH2 (dinh li d/cao trong tam giac vuong

Tam giac AHC vuong tai H có AN là đường cao

=> AN.AC = AH2 (dinh li d/cao trong tam giac vuong

Nen AM.AB =AN.AC

b,Tam giác AHB vuông tại H,=> cot B = BH/AH

Tam giác AHC vuông tại H => cotC = CH/AH

Co H thuoc BC (gt) => BC=BH+CH =[AH(BH+CH)]/AH=AH(cot B+cotC)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải:

a)

Xét tam giác $MAH$ và $HAB$ có:

\(\left\{\begin{matrix} \widehat{AMH}=\widehat{AHB}=90^0\\ \text{góc A chung}\end{matrix}\right.\Rightarrow \triangle MAH\sim \triangle HAB(g.g)\)

Do đó: \(\frac{MA}{HA}=\frac{AH}{AB}\Rightarrow MA.AB=HA^2(1)\)

Hoàn toàn tương tự:

\(\triangle ANH\sim \triangle AHC\Rightarrow \frac{AN}{AH}=\frac{AH}{AC}\Rightarrow AN.AC=AH^2(2)\)

\(\Rightarrow AN.AC=AM.AB\) (đpcm)

b)

Với tam giác $ABC$ nhọn bất kỳ, ta có công thức sau:

\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)

Chứng minh: Kẻ \(BH\perp AC\). Khi đó \(S_{ABC}=\frac{BH.AC}{2}\)

Mà: \(\frac{BH}{AB}=\sin A\Rightarrow BH=AB.\sin A\)

\(\Rightarrow S_{ABC}=\frac{BH.AC}{2}=\frac{AB.\sin A.AC}{2}\) (đpcm)

Áp dụng công thức trên vào bài toán:

\(S_{AMN}=\frac{1}{2}.AM.AN\sin A\)

\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)

\(\Rightarrow \frac{S_{AMN}}{S_{ABC}}=\frac{AM.AN}{AB.AC}=\frac{AM.AB.AN.AC}{AB^2.AC^2}=\frac{AH^2.AH^2}{AB^2.AC^2}\) (theo phần a)

\(=\left(\frac{AH}{AB}\right)^2\left(\frac{AH}{AC}\right)^2=\sin ^2B.\sin ^2C\) (đpcm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Hình vẽ:
Hệ thức lượng trong tam giác vuông