Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(bn tự vẽ hình)Gọi AH giao EFtại M , AI giao EF tại N
a) xét tứ giác AEHF có: A=E=F=90o(góc)→AEHF là HCN→AM=EM=MH=MF
Ta có: ΔAHF~ΔACH(g.g)→AHF=ACH(góc) mà AHF =HAE (góc)(vì SLT do AE//HF)→ACH=HAE(góc)
Mà MA=ME(cmt)→ΔAME cân ở M→HAE=FEA(góc) do đó ACH=FEA(góc)
lại có BHE=ACH(góc)(đồng vị )→BHE=FEA(góc)
mặt khác:NAE=90o-FEA(ΔAEN vuông ở N) , B = 90o-BHE(ΔBHE vuông ở E )
→NAE=B(góc)→ΔAIB cân ở I → IB=IA
tương tự ta có :IA=IC
vậy IB=IC→I là trung điểm của BC
b) ta có : sABC=2sAEHF→SABC=4SAEF→\(\frac{SAEF}{SABC}=\frac{1}{4}\)mà ΔAEF~ΔACB(cmt)→\(\left(\frac{AF}{AB}\right)^2=\frac{1}{4}\)→\(\frac{AF}{AB}=\frac{1}{2}\)
→\(\frac{HE}{AB}=\frac{1}{2}\)(AF=HE)
→ΔAHB vuông ở H có đương cao HE=1/2 cạnh huyền→HE là đường trung tuyến của AB →ΔAHB vuông cân ở H→B=45o(góc)
→C=45o(góc)
vậy ΔABC vuông cân ở A
(câu b lm bừa nhé)
a, tam giác ABH có: góc ABH=90 độ,vuông góc với AB
Suy ra: AM.AB=AH^2(Đ/L)
CMTT tam giác AHC: AN.AC=AH^2(Đ/L)
cả hai diều suy ra:AM.AB=AN.AC
A B C H N M
hình không đẹp lắm, mong cậu thông cảm.
Có : AH là đường cao của tam giác ABC=> goc AHB =900
Tam giác AHB vuông tại H có AM là đường cao
=> AM.AB = AH2 (dinh li d/cao trong tam giac vuong
Tam giac AHC vuong tai H có AN là đường cao
=> AN.AC = AH2 (dinh li d/cao trong tam giac vuong
Nen AM.AB =AN.AC
b,Tam giác AHB vuông tại H,=> cot B = BH/AH
Tam giác AHC vuông tại H => cotC = CH/AH
Co H thuoc BC (gt) => BC=BH+CH =[AH(BH+CH)]/AH=AH(cot B+cotC)
Lời giải:
a)
Xét tam giác $MAH$ và $HAB$ có:
\(\left\{\begin{matrix} \widehat{AMH}=\widehat{AHB}=90^0\\ \text{góc A chung}\end{matrix}\right.\Rightarrow \triangle MAH\sim \triangle HAB(g.g)\)
Do đó: \(\frac{MA}{HA}=\frac{AH}{AB}\Rightarrow MA.AB=HA^2(1)\)
Hoàn toàn tương tự:
\(\triangle ANH\sim \triangle AHC\Rightarrow \frac{AN}{AH}=\frac{AH}{AC}\Rightarrow AN.AC=AH^2(2)\)
\(\Rightarrow AN.AC=AM.AB\) (đpcm)
b)
Với tam giác $ABC$ nhọn bất kỳ, ta có công thức sau:
\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)
Chứng minh: Kẻ \(BH\perp AC\). Khi đó \(S_{ABC}=\frac{BH.AC}{2}\)
Mà: \(\frac{BH}{AB}=\sin A\Rightarrow BH=AB.\sin A\)
\(\Rightarrow S_{ABC}=\frac{BH.AC}{2}=\frac{AB.\sin A.AC}{2}\) (đpcm)
Áp dụng công thức trên vào bài toán:
\(S_{AMN}=\frac{1}{2}.AM.AN\sin A\)
\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)
\(\Rightarrow \frac{S_{AMN}}{S_{ABC}}=\frac{AM.AN}{AB.AC}=\frac{AM.AB.AN.AC}{AB^2.AC^2}=\frac{AH^2.AH^2}{AB^2.AC^2}\) (theo phần a)
\(=\left(\frac{AH}{AB}\right)^2\left(\frac{AH}{AC}\right)^2=\sin ^2B.\sin ^2C\) (đpcm)
Hướng Cm nhé!
a) Dùng định lí Pitago:
Cm: AB^2 + AC^2 = BC^2
b) Xét tứ giác AMKN có :
góc A=90*
__ M= 90( KM vuông vs AB)
__ N= 90* ( KN vuông vs AC)
-> điều phải chứng minh
Tính MN:
Tính đường cao AH
Sử dụng tính chất hình chữ nhật đối vs Hình AMKN ( 2 đường chéo bằng nhau)
ta có : AH= MN
c) Xét 2 tam giác: AMN vầCB
-> đưa ra tỉ số AM/ AC = AN/ AB
-> AM.AB=AN.AC
d) Căn Căn kia thì tớ chịu, lười chả buồn nghĩ =)))
Hướng Cm nhé!
a) Dùng định lí Pitago:
Cm: AB^2 + AC^2 = BC^2
b) Xét tứ giác AMKN có :
góc A=90*
__ M= 90( KM vuông vs AB)
__ N= 90* ( KN vuông vs AC)
-> điều phải chứng minh
Tính MN:
Tính đường cao AH
Sử dụng tính chất hình chữ nhật đối vs Hình AMKN ( 2 đường chéo bằng nhau)
ta có : AH= MN
c) Xét 2 tam giác: AMN vầCB
-> đưa ra tỉ số AM/ AC = AN/ AB
-> AM.AB=AN.AC
d) Căn Căn kia thì tớ chịu, lười chả buồn nghĩ =)))