K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

A B C H N M

hình không đẹp lắm, mong cậu thông cảm.

Có : AH là đường cao của tam giác ABC=> goc AHB =900

Tam giác AHB vuông tại H có AM là đường cao

=> AM.AB = AH2 (dinh li d/cao trong tam giac vuong

Tam giac AHC vuong tai H có AN là đường cao

=> AN.AC = AH2 (dinh li d/cao trong tam giac vuong

Nen AM.AB =AN.AC

b,Tam giác AHB vuông tại H,=> cot B = BH/AH

Tam giác AHC vuông tại H => cotC = CH/AH

Co H thuoc BC (gt) => BC=BH+CH =[AH(BH+CH)]/AH=AH(cot B+cotC)

11 tháng 8 2016

a, tam giác ABH có: góc  ABH=90 độ,vuông góc với AB 

Suy ra: AM.AB=AH^2(Đ/L)

CMTT tam giác AHC: AN.AC=AH^2(Đ/L)

cả hai diều suy ra:AM.AB=AN.AC

11 tháng 8 2016

phần b nghĩ ra chưa làm nốt cho

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN\(\sim\)ΔACB

 

2 tháng 9 2021

thanks

 

22 tháng 10 2021

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

22 tháng 10 2021

bạn ơi còn câu a với câu c đâu ạ ?

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải:

a)

Xét tam giác $MAH$ và $HAB$ có:

\(\left\{\begin{matrix} \widehat{AMH}=\widehat{AHB}=90^0\\ \text{góc A chung}\end{matrix}\right.\Rightarrow \triangle MAH\sim \triangle HAB(g.g)\)

Do đó: \(\frac{MA}{HA}=\frac{AH}{AB}\Rightarrow MA.AB=HA^2(1)\)

Hoàn toàn tương tự:

\(\triangle ANH\sim \triangle AHC\Rightarrow \frac{AN}{AH}=\frac{AH}{AC}\Rightarrow AN.AC=AH^2(2)\)

\(\Rightarrow AN.AC=AM.AB\) (đpcm)

b)

Với tam giác $ABC$ nhọn bất kỳ, ta có công thức sau:

\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)

Chứng minh: Kẻ \(BH\perp AC\). Khi đó \(S_{ABC}=\frac{BH.AC}{2}\)

Mà: \(\frac{BH}{AB}=\sin A\Rightarrow BH=AB.\sin A\)

\(\Rightarrow S_{ABC}=\frac{BH.AC}{2}=\frac{AB.\sin A.AC}{2}\) (đpcm)

Áp dụng công thức trên vào bài toán:

\(S_{AMN}=\frac{1}{2}.AM.AN\sin A\)

\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)

\(\Rightarrow \frac{S_{AMN}}{S_{ABC}}=\frac{AM.AN}{AB.AC}=\frac{AM.AB.AN.AC}{AB^2.AC^2}=\frac{AH^2.AH^2}{AB^2.AC^2}\) (theo phần a)

\(=\left(\frac{AH}{AB}\right)^2\left(\frac{AH}{AC}\right)^2=\sin ^2B.\sin ^2C\) (đpcm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Hình vẽ:
Hệ thức lượng trong tam giác vuông

15 tháng 10 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

hay ΔABC vuông tại A

27 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 8 2017

mình ko hiểu cho lắm bạn à đây là hình học mà