K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

sao hai biểu thức đều có tên là E thế. biểu thức hai đặt tên lại là F nhé :

xét : E - F = \(\left(2000^2+2003^2+2005^2+2006^2\right)-\left(2001^2+2002^2+2004^2+2007^2\right).\)

\(=\left(2000^2-2001^2\right)+\left(2003^2-2002^2\right)+\left(2005^2-2004^2\right)+\left(2006^2-2007^2\right).\)

\(=-4001+4005+4009-4013=0\)

Vậy E = F 

23 tháng 2 2020

Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)

=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)

=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)

=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)

=> \(x^2-1=0\)

=> \(x^2=1\)

=> \(x=\pm1\)

Vậy phương trình có 2 nghiệm là x = 1, x = -1 .

24 tháng 2 2020

Thanks bn

22 tháng 11 2015

=2004^2-2003^2+2002^2-2001^2+....+1
=(2004+2003)(2004-2003)+(2002+2001)(2002-2001)+.....+1
=2004+2003+...+1
=2009010

6 tháng 6 2019

dùng hàng đẳng thức bình phương tổng 2 số là auto ra, cái chính là tách khéo léo để tạo được thành hàng đẳng thức nhá !!!

7 tháng 6 2019

a) \(498^2+996.502+502^2\)

\(=498^2+2.498.502+502^2\)

\(=\left(498+502\right)^2\)

\(=1000^2\)

\(=1000000\)

b) \(126^2-52.126+26^2\)

\(=126^2-2.26.126+26^2\)

\(=\left(126-26\right)^2\)

\(=100^2\)

\(=10000\)

26 tháng 11 2016

A=(20042-20032)+(20022-20012)+...+(22-12)

A=(2004-2003)(2004+2003)+(2002-2001)(2002+2001)+...+(2-1)(2+1)

A=2004+2003+2002+2001+...+2+1

A=(2004+1).2014:2

A=2029105

7 tháng 10 2018

\(2006^2-2005^2+2004^2-2003^3+...+2^2-1^2\)

\(=\left(2006-2005\right).\left(2006+2005\right)+\left(2004-2003\right).\left(2004+2003\right)+...+\left(2-1\right).\left(2+1\right)\)

\(=2006+2005+2004+...+2+1\)

\(=\left(2006+1\right)+\left(2005+2\right)+...\left(1003+1004\right)\)

\(=2007.1003\)

\(=....\)

~ hok tốt ~

7 tháng 10 2018

@Phan thi hong nhung, sao từ bước thứ 2 ra đc bước thứ 3 vậy

29 tháng 1 2016

Đặt dãy trên là A

Ta có:

A=(12-22)+(32-42)+...+(20032-20042)+20052

A=(1-2)(1+2)+(3-4)(3+4)+...+(2003-2004)(2003+2004)+20052

A=(-1.3)+(-1.7)+(-1.11)+...+(-1.4007)+4020025

A=-3+(-7)+(-11)+...+(-4007)+4020025

A=-(3+7+11+...+4007)+4020025

A=-{(4007+3)[(4007-3):4+1]}+4020025

A=-(4010.1002)+4020025

A=-4018020+4020025

A=2005

29 tháng 1 2016

ai kết bạn không

14 tháng 2 2019

\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)

\(\Rightarrow\left(\frac{x-4}{2000}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(\frac{x-2}{2002}-1\right)=\left(\frac{x-2002}{2}-1\right)+\left(\frac{x-2001}{3}-1\right)+\left(\frac{x-2000}{4}-1\right)\)\(\Rightarrow\frac{x-2004}{2000}+\frac{x-2004}{2001}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{3}+\frac{x-2004}{4}\)

\(\Rightarrow\left(x-2004\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\right)=\left(x-2004\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)

Với \(x-2004\ne0\)

\(\Rightarrow\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\left(KTM\right)\)

Với \(x-2004=0\)

\(\Rightarrow x=2004\)