K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

\(x^2-x-18+\frac{72}{x^2-x}=0\)

\(\Leftrightarrow\frac{x^2-x-18}{1}+\frac{72}{x^2-x}=0\)

\(\Leftrightarrow\frac{x^2-x-18}{1}+\frac{72}{x.\left(x-1\right)}=0\)

\(\Leftrightarrow\frac{x.\left(x-1\right).\left(x^2-x-18\right)}{x.\left(x-1\right)}+\frac{72}{x.\left(x-1\right)}=0\)

\(\Leftrightarrow x.\left(x-1\right).\left(x^2-x-18\right)+72=0\)

\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-18\right)+72=0\)

\(\Leftrightarrow x^4-x^3-18x^2-x^3+x^2+18x+72=0\)

\(\Leftrightarrow x^4-2x^3-17x^2+18x+72=0\)

Đoạn này chịu.

Chúc bạn học tốt!

a: Đặt \(a=x^2+x\)

Phương trình ban đầu sẽ trở thành \(a^2+4a-12=0\)

=>\(a^2+6a-2a-12=0\)

=>a(a+6)-2(a+6)=0

=>(a+6)(a-2)=0

=>\(\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

=>\(x^2+x-2=0\)(Vì \(x^2+x+6=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\forall x\))

=>\(\left(x+2\right)\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

b:

Sửa đề: \(\left(x^2+2x+3\right)^2-9\left(x^2+2x+3\right)+18=0\)

Đặt \(b=x^2+2x+3\)

Phương trình ban đầu sẽ trở thành \(b^2-9b+18=0\)

=>\(b^2-3b-6b+18=0\)

=>b(b-3)-6(b-3)=0

=>(b-3)(b-6)=0

=>\(\left(x^2+2x+3-3\right)\left(x^2+2x+3-6\right)=0\)

=>\(\left(x^2+2x\right)\left(x^2+2x-3\right)=0\)

=>\(x\left(x+2\right)\left(x+3\right)\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x+2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-3\\x=1\end{matrix}\right.\)

c: \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=>\(\left(x^2-4\right)\left(x^2-10\right)=72\)

=>\(x^4-14x^2+40-72=0\)

=>\(x^4-14x^2-32=0\)

=>\(\left(x^2-16\right)\left(x^2+2\right)=0\)

=>\(x^2-16=0\)(do x2+2>=2>0 với mọi x)

=>x2=16

=>x=4 hoặc x=-4

13 tháng 12 2018

⇔ ( x + 2 )( x - 1 ) = 0 ⇔ Bài tập: Phương trình tích | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy phương trình có tập nghiệm là S = { - 2;1 }.

30 tháng 4 2018

27 tháng 2 2017

a ) x = 300

b) Gợi ý: Bớt 3 ở từng phân số. Đáp số: x = 1; x = -2

23 tháng 2 2023

`a,x^2 +4x-5=0`

`<=> x^2-x+5x-5=0`

`<=> x(x-1)+5(x-1)=0`

`<=>(x-1)(x+5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

`b, x^2 -x-12=0`

`<=> x^2 +3x-4x-12=0`

`<=>(x^2+3x)-(4x+12)=0`

`<=>x(x+3)-4(x+3)=0`

`<=>(x+3)(x-4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

`c, (2x-7)^2 - 6(2x-7)(x-3)=0`

`<=>(2x-7)(2x-7 -6x+18)=0`

`<=>(2x-7) ( -4x+11)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\-4x+11=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\-4x=-11\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{11}{4}\end{matrix}\right.\)

 

 

a: =>(x+5)(x-1)=0

=>x=1 hoặc x=-5

b: =>(x-4)(x+3)=0

=>x=4 hoặc x=-3

c: =>(2x-7)(2x-7-6x+18)=0

=>(2x-7)(-4x+11)=0

=>x=11/4 hoặc x=7/2

19 tháng 4 2019

20 tháng 4 2017

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

1. Đặt $x^2+x=a$ thì pt trở thành:

$a^2+4a=12$
$\Leftrightarrow a^2+4a-12=0$

$\Leftrightarrow  (a-2)(a+6)=0$

$\Leftrightarrow a-2=0$ hoặc $x+6=0$

$\Leftrightarrow x^2+x-2=0$ hoặc $x^2+x+6=0$

Dễ thấy $x^2+x+6=0$ vô nghiệm.

$\Rightarrow x^2+x-2=0$

$\Leftrightarrow (x-1)(x+2)=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

2.

$x(x-1)(x+1)(x+2)=24$
$\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24$

$\Leftrightarrow (x^2+x)(x^2+x-2)=24$

$\Leftrightarrow a(a-2)=24$ (đặt $x^2+x=a$)

$\Leftrightarrow a^2-2a-24=0$

$\Leftrightarrow (a+4)(a-6)=0$

$\Leftrightarrow a+4=0$ hoặc $a-6=0$

$\Leftrightarrow x^2+x+4=0$ hoặc $x^2+x-6=0$

Nếu $x^2+x+4=0$

$\Leftrightarrow (x+\frac{1}{2})^2=\frac{1}{4}-4<0$ (vô lý - loại)

Nếu $x^2+x-6=0$

$\Leftrightarrow (x-2)(x+3)=0$

$\Leftrightarrow x-2=0$ hoặc $x+3=0$
$\Leftrightarrow x=2$ hoặc $x=-3$

5 tháng 3 2017

a: =>(5x+3)(x-1)=0

=>x=1 hoặc x=-3/5

b: =>(x-3)(4x-1-5x-2)=0

=>(x-3)(-x-3)=0

=>x=-3 hoặc x=3

c: =>(x+6)(3x-1+x-6)=0

=>(x+6)(4x-7)=0

=>x=7/4 hoặc x=-6