\(17x-39y=4\)

\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2015

1) Ta có 17(x-10)=39(y-4). Ta có 17(x-10)=39(y-4), suy ra x-10=39k, y-4=17k. Vậy nghiệm của phương trình là \(x=39k+10,y=17k+4\)  với k nguyên tùy ý.

2)Các bài sau làm tương tự

 

\(11x+8y=73\)

\(\Rightarrow11x+8y=33+40\)

\(\Rightarrow11x+8y=11.3+8.5\)

\(\Rightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}\)

22 tháng 11 2018

âm thì sao bạn

10 tháng 3 2018

Ta có: \(7\left(x^2+xy+y^2\right)=39\left(x+y\right)\)  nên \(x^2+xy+y^2⋮39\)   \(x+y⋮7\)

 Đặt \(x^2+xy+y^2=39k;x+y=7k\)  \(\left(k\in N\right)\)   vì  \(x^2+xy+y^2\ge0\)

  \(\Rightarrow xy=\left(x+y\right)^2-\left(x^2+xy+y^2\right)=49k^2-39k\)

Theo Viet x,y là nghiệm của phương trình \(a^2-49k^2a+49k^2-39k=0\)

  Phương trình có 2 nghiệm khi \(\Delta=49k^2-4.49k^2+4.39k=156k-147k^2=k\left(156-147k\right)\ge0\)

  Vì k>0 nên \(156>147k\), vì k nguyên nên k=1

Do đó ta có x + y = 7,xy=10 nên áp dụng viet, ta giải được (x,y)=(2;5);(5;2)

Đó là giá trị nguyên cần tìm

   

2 tháng 3 2020

\(x^2-6x+9=0\)     (1)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)

\(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x=3\)

hoặc \(x=1\)

hoặc \(x=2\)

Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)

Mà 2 phương trình trên có 1 nghiệm chung

\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Câu 1)

Thử \(x=1,2,3,4,5\) ta thấy chỉ \(x=1\) thỏa mãn \(y=1\)

Với \(x\geq 6\)

Để ý rằng \(1!+2!+3!+...+x!=3+3!+4!+...+x!\) luôn chia hết cho $3$. Do đó \(y^3\vdots 3\rightarrow y\vdots 3\rightarrow y^3\vdots 27\)

Với \(x\geq 6\) thì \(x!\) luôn chia hết cho $27$. Do đó để \(y^3\vdots 27\) thì \(1!+2!+...+5!\) cũng phải chia hết cho $27$ hay $153$ chia hết cho $27$. Điều này vô lý.

Do đó phương trình chỉ có bộ nghiệm \((x,y)=(1,1)\) thỏa mãn.

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Bài 2)

Ta thấy \(3(x^2+y^2+xy)=x+8y\geq 0\) nên chắc chắn tồn tại ít nhất một số nguyên không âm.

TH1: \(x\geq 0\)

\(\text{PT}\Leftrightarrow 3y^2+y(3x-8)+3x^2-x=0\)

Để PT có nghiệm thì \(\Delta=(3x-8)^2-12(3x^2-x)\geq 0\)

\(\Leftrightarrow -27x^2-36x+64\geq 0\)

Giải HPT trên ta suy ra \(x\leq 1\). Do đó \(x=0\) hoặc $1$

Nếu \(x=0\Rightarrow y=0\)

Nếu \(x=1\rightarrow y=1\)

TH2: \(x<0\) thì \(y> 0\)

\(\text{PT}\Leftrightarrow 3x^2+x(3y-1)+3y^2-8y=0\)

Để PT có nghiệm thì \(\Delta =(3y-1)^2-12(3y^2-8y)\geq 0\)

\(\Leftrightarrow -27y^2+90y+1\geq 0\rightarrow y\leq 3\rightarrow y=1,2,3\)

Nếu \(y=1\rightarrow x=1\)

Nếu \(y=2,3\) không có $x$ thỏa mãn.

Vậy \((x,y)=(0,0),(1,1)\)

13 tháng 11 2016

xy - 2x - 3y + 1 = 0

<=> x(y - 2) = 3y - 1

<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)

Để x nguyên thì (y - 2) phải là ước của 5 hay

(y - 2) = (1, 5, - 1, - 5)

Giải tiếp sẽ ra

27 tháng 2 2022

a) ĐKXĐ : \(x\ge5\)

Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))

Khi đó phương trình thành a + b = 2

Lại có \(b^3+a^2=-2\)

=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)

a = 5 => x = 30 (tm) 

Vậy x = 30 là nghiệm phương trình 

27 tháng 2 2022

d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)

<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)

<=> |5x - 2| + |5x - 4| = 2

Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)

Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)

Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình