Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`( 2020 - 2018 ) + ( 2016 - 2014 ) + ..........+ ( 16 - 14 ) + (12 - 10 )`
Số hạng của biểu thức trên là:
`(2020 - 10) \div 2 + 1 = 1006 (\text {số hạng})`
Chia bt thành các nhóm, mỗi nhóm có `2` số
`1006 \div 2 = 503 (\text {nhóm})`
`( 2020 - 2018 ) + ( 2016 - 2014 ) + ..........+ ( 16 - 14 ) + (12 - 10 )`
`= 2 + 2 + ... + 2 + 2`
Mà bt trên có `503` nhóm
`=> 2*503`
`=> 1006`
Vậy, giá trị biểu thức trên là `1006.`
`\text {KaizuulvG}`
Đặt \(A=2^{99}+2^{98}+..+2\)
\(\Rightarrow2A=2^{100}+2^{99}+..+2^2=2^{100}-2+\left(2^{99}+2^{98}+..+2\right)=2^{100}-2+A\)
vậy \(A=2^{100}-2\text{ mà }P=2^{100}-A=2\)
vậy P=2
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
P = 2.3.4....a => P chia hết cho 3
=> P - 1 : 3 dư 2 => Ko là SCP
Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2
=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP
=> P - 1 và P + 1 Ko là SCP
Ta có: \(S=\dfrac{4}{1\cdot3}+\dfrac{16}{3\cdot5}+\dfrac{36}{5\cdot7}+...+\dfrac{2500}{49\cdot51}\)
\(=1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{3\cdot5}+1+\dfrac{1}{5\cdot7}+...+1+\dfrac{1}{49\cdot51}\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)
\(=25+\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)
\(=25+\dfrac{1}{2}\cdot\dfrac{50}{51}\)
\(=25+\dfrac{25}{51}\)
\(=25\cdot\dfrac{52}{51}=\dfrac{1300}{51}\)
11A:
a) Thay t = 1 vào A ta có:
\(A=1^4+2\cdot1^2+2022=1+2+2022=2025\)
b) Thay m = 4 và n = 2 vào B ta có:
\(B=4^2:2^2+\left(4-2\right)^2+1=16:4+2^2+1=4+4+1=9\)
11B
a) Thay a = 3 vào C ta có:
\(C=\left(2+3\right)^2+\left(3-2\right)^{2021}=5^2+1^{2021}=25+1=26\)
b) Thay a = 4 và b = 5 vào D ta có:
\(D=4\cdot5^2-\left(4+5\right)^2-1=4\cdot25-9^2-1=100-81-1=18\)
12B:
a: Độ dài cạnh là \(\dfrac{4a}{4}=a\)(m)
Diện tích hình vuông MNPQ là; \(S=a^2\)
b: Khi a=2 thì \(S=2^2=4\left(m^2\right)\)
13A:
Ngày thứ hai bán được:
5124-480=4644(lít)
Số lít dầu bán được trong ngày thứ ba là:
\(4644\cdot2=9288\left(lít\right)\)