K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

$\begin{cases}|x^2-5x+4|>x-1\\x>1\\\end{cases}$

$\to \begin{cases}(x^2-5x+4)^2>(x-1)^2\\x>1\\\end{cases}$

$\to \begin{cases}(x-1)^2(x-4)^2>(x-1)^2\\x>1\\\end{cases}$

$\to \begin{cases}(x-1)^2[(x-4)^2-1]>0\\x>1\\\end{cases}$

$\to \begin{cases}(x-4)^2-1>0\\x>1\\\end{cases}$

$\to \begin{cases}(x-5)(x-3)>0\\x>1\\\end{cases}$

$\to \begin{cases}\left[ \begin{array}{l}x>5\\x<3\end{array} \right.\\x>1\\\end{cases}$

$\to \left[ \begin{array}{l}1<x<3\\x>5\end{array} \right.$

Vậy bất phương trình có tập nghiệm $S=(1,3]∩(5,∞]$

27 tháng 5 2020

bình phương lên để mất căn rồi lập bảng xét dấu nha bạn

NV
1 tháng 4 2020

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow4\sqrt{2x^2-10x+16}-4x+12-4\sqrt{x-1}\le0\)

\(\Leftrightarrow4\sqrt{2x^2-10x+16}-5x+9+x+3-4\sqrt{x-1}\le0\)

\(\Leftrightarrow\frac{16\left(2x^2-10x+16\right)-\left(5x-9\right)^2}{4\sqrt{2x^2-10x+16}+5x-9}+\frac{\left(x+3\right)^2-16\left(x-1\right)}{x+3+4\sqrt{x-1}}\le0\)

\(\Leftrightarrow\frac{7\left(x-5\right)^2}{4\sqrt{2x^2-10x+16}+5x-9}+\frac{\left(x-5\right)^2}{x+3+4\sqrt{x-1}}\le0\)

\(\Leftrightarrow\left(x-5\right)^2=0\Rightarrow x=5\)

Vậy BPT có nghiệm duy nhất \(x=5\)

3 tháng 4 2020

Cảm ơn ạ

2: \(-4x^2+5x-2\)

\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)

\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)

Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)

Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)

=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)

\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)

\(=16m^2+32m+16+4\left(1-4m^2\right)\)

\(=32m+20\)

Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)

=>32m+20<0

=>32m<-20

=>\(m< -\dfrac{5}{8}\)

21 tháng 2 2020

a, Đặt\(\sqrt{x.\left(5-x\right)}=t\) \(\left(0\le t\right)\)

Bpt trở thành: \(-t^2+t+2< 0\)

<=> \(\left[{}\begin{matrix}t< -1\left(loai\right)\\t>2\end{matrix}\right.\)

Với t>2 =>\(\sqrt{x.\left(5-x\right)}>2\)

<=>\(-x^2+5x-4>0\)

<=>\(1< x< 4\)

<=>\(x\in\left(1;4\right)\)

NV
22 tháng 2 2020

b/ Hiển nhiên rằng vế phải không âm, do đó nghiệm của BPT chính là tất cả các giá trị làm cho biểu thức xác định

Vậy bạn chỉ cần tìm ĐKXĐ cho vế trái là xong (rất đơn giản)