
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(x^2-4x+3>0\)
\(\Leftrightarrow x^2-x-3x+3>0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)>0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)>0\)
Lập bảng xét dấu :
x x-3 x-1 (x-3)(x-1) 1 3 - 0 - + 0 - + + + - +
Dựa vào bảng xét dấu ta có : \(x< 1\) hoặc \(x>3\)
b) \(x^2-2x+3x-6< 0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)< 0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)< 0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\)
Lập bảng xét dấu :
x x+3 x-2 (x+3)(x-2) -3 2 0 0 - - + - + + + - +
Dựa vào bảng xét dấu ta có : \(-3< x< 2\)


tự trả lời :
2x + 4x2 >8
2x(1 + 2x) >8
TH1 : 2x > 8
x > 4
TH2 : 1 + 2x >8
2x > 7
x > \(\frac{7}{2}\)
\(x+x^2< 5\)
\(\Leftrightarrow x^2+x< 5\)
\(\Leftrightarrow x(x+1)< 5\)
\(\Leftrightarrow\orbr{\begin{cases}x< 5\\x+1< 5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 5\\x< 4\end{cases}}\)
Bạn 🕎NG Hùng Dũng🔯( Team Boss ) biết làm rồi mà sao ko làm bài cuối


a) \(x^2-5x+8=\left(x^2-5x+6,25\right)+1,75=\left(x-2,5\right)^2+1,75\ge1,75>0\rightarrowđpcm\)
b) \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1=-\left(2x+1\right)^2-1\le-1< 0\rightarrowđpcm\)
A =x2 -5x +8 >0 với mọi x
= x2-5x+\(\dfrac{25}{4}+\dfrac{7}{4}\)
=\(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\)
do \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\)
=> \(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
=> A luôn lớn hơn 0 vs mọi x
B= -4x2 -4x-2 < 0 với mọi x
=-(4x2+4x+2)
=-4x2-4x-1-1
=-\(\left(4x^2+4x+1+1\right)\)
=-\(\left[4\left(x^2+x+\dfrac{1}{4}\right)+1\right]\)
= -\(\left[4\left(x+\dfrac{1}{2}\right)^2+1\right]\)
=-4\(\left(x+\dfrac{1}{2}\right)^2-1\)
do \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)
=> -4 \(\left(x+\dfrac{1}{2}\right)^2\le0\)
=> \(-4\left(x+\dfrac{1}{2}\right)^2-1\le-1\)
vậy B luôn nhỏ hơn 0 vs mọi x

Bạn khá hiểu bài rồi đó. Đúng hết 4 câu đầu luôn.
Bổ sung thêm vào câu 3 một chút (nối tiếp theo sau nhé):
\(\Rightarrow\left(m-n\right)\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\)
Bổ xung thêm vào câu 4:
\(\Rightarrow\left(x-y\right)\left(2x-3y\right)\left(2x+3y\right)\)
Sửa lại câu 5:
\(10x^2\left(a-2b\right)^2-\left(x^2+2\right)\left(2b-a\right)^2\)
\(=-10x^2\left(2b-a\right)^2-\left(x^2+2\right)\left(2b-a\right)^2\)
\(=\left[-10x^2-\left(x^2+2\right)\right]\left(2b-a\right)^2\)
\(=\left(-10x^2-x^2-2\right)\left(2b-a\right)^2\)
\(=\left(-11x^2-2\right)\left(4b^2-4ab+a^2\right)\)

\(4x^2+11x\le3\)
\(\Leftrightarrow4x^2+11x-3\le0\)
\(\Leftrightarrow4x^2+12x-x-3\le0\)
\(\Leftrightarrow\left(4x^2+12x\right)-\left(x+3\right)\le0\)
\(\Leftrightarrow4x\left(x+3\right)-\left(x+3\right)\le0\)
\(\Leftrightarrow\left(x+3\right)\left(4x-1\right)\le0\)
Phần sau tự làm nha ^_^

\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }

(x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = a
<=> a2 + 3xa + 2x2 = 0
<=> a2 + 2ax + ax + 2x2 = 0
<=> (a + x)(a + 2x) = 0
<=> (x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
<=> (x2 + 5x + 8)(x2 + 6x + 8) = 0
<=> x2 + 4x + 2x + 8 = 0 (vì x2 + 5x + 8 = (x2 + 5x + 6,25) + 1,75 = (x + 2,5)^2 + 1,75 > 0)
<=> (x + 4)(x + 2) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x+2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=-2\end{cases}}\)
Vậy S = {-4; -2}
Ta có:
\(4x^2-4x>8\)
\(\Leftrightarrow4x^2-4x-8>0\)
\(\Leftrightarrow4x^2+4x-8x-8>0\)
\(\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)>0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-8\right)>0\)
\(\Leftrightarrow4\left(x+1\right)\left(x-2\right)>0\)
*TH1: x+1 > 0 và x -2 >0
<=> x > -1 và x > 2
* TH2: x +1 < 0 và x - 2 <0
<=> x < -1 và x < 2
Vậy x > 2 và x < -1