K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2019

từ câu 1 đến câu 4 bạn có thẻ dùng máy tính casio f(x)570 VN giải nhé .bạn bấm MODE xuống 1 1

1)vô nghiệm

2)vô nghiệm

3)luôn đúng

4)\(\frac{-1-\sqrt{41}}{4}\le x\le\frac{-1+\sqrt{41}}{4}\)

13 tháng 3 2019

5) \(\left\{{}\begin{matrix}-2x^2+5x-2\le x-3\\-2x^2+5x-2\ge-x+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{2-\sqrt{6}}{2}\\x\ge\frac{2+\sqrt{6}}{2}\end{matrix}\right.\\vonghiem\end{matrix}\right.\) vậy bpt vô nghiệm

21 tháng 5 2018

c) Đặt \(t=\sqrt{\left(x-3\right)\left(8-x\right)}\left(t\ge0\right)=\sqrt{-x^2+11x-24}\Rightarrow t^2-2=-x^2+11x-26\)

\(\left(1\right)\Rightarrow t\ge t^2-2\Leftrightarrow t^2-t-2\le0\Leftrightarrow-1\le t\le2\Rightarrow0\le t\le2\Rightarrow0\le-x^2+11x-24\le4\Leftrightarrow\left\{{}\begin{matrix}3\le x\le8\\\left[{}\begin{matrix}x\le4\\x\ge7\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\le x\le4\\7\le x\le8\end{matrix}\right.\)

Vậy tập nghiệm của bpt là \([3;4]\cup[7;8]\)

NV
21 tháng 2 2021

Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)

Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)

- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)

- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)

Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1

\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)

NV
3 tháng 4 2020

\(\Leftrightarrow x^4-x^3-x^2+x^3-x^2-x-3x^2+3x+3\le0\)

\(\Leftrightarrow x^2\left(x^2-x-1\right)+x\left(x^2-x-1\right)-3\left(x^2-x-1\right)\le0\)

\(\Leftrightarrow\left(x^2+x-3\right)\left(x^2-x-1\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{-1-\sqrt{13}}{2}\le x\le\frac{1-\sqrt{5}}{2}\\\frac{-1+\sqrt{13}}{2}\le x\le\frac{1+\sqrt{5}}{2}\end{matrix}\right.\)

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

27 tháng 5 2020

bình phương lên để mất căn rồi lập bảng xét dấu nha bạn