Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện để phương trình (1) trên có nghĩa là:
\(\begin{cases}x\ge y+1\\y-1\ge\\x,y\in Z\end{cases}0}\) \(\Leftrightarrow\) \(\begin{cases}y\ge1\\x\ge\\x,y\in Z\end{cases}y+1}\)(2)
Từ phương trình (1) ta có
\(\frac{C_x^{y+1}}{C_x^{y-1}}\) = \(\frac{5}{2}\) \(\Leftrightarrow\) \(\frac{x!\left(y-1\right)!\left(x-y+1\right)!}{\left(y+1\right)!\left(x-y-1\right)!x!}\) = \(\frac{5}{2}\) \(\Leftrightarrow\) \(\frac{\left(x-y\right)\left(x-y+1\right)}{y\left(y+1\right)}\) = \(\frac{5}{2}\) (3)
Vẫn từ (1) ta có
\(\frac{C_{x+1}^y}{C_x^{y+1}}\) = \(\frac{6}{5}\) \(\Leftrightarrow\) \(\frac{\left(x+1\right)!\left(y+1\right)!\left(x-y+1\right)!}{y!\left(x+1-y\right)!x!}\) = \(\frac{6}{5}\)
\(\Leftrightarrow\) \(\frac{\left(x+1\right)\left(y+1\right)}{\left(x-y\right)\left(x-y+1\right)}\) = \(\frac{6}{5}\) (4)
Nhân từng vế (3), (4) ta có
\(\frac{x+1}{y}\) = 3 \(\Leftrightarrow\) x+1 = 3y (5)
Thay (5) vào (4) đi đến
\(\frac{3y\left(y+1\right)}{\left(2y-1\right)2y}\) = \(\frac{6}{5}\) \(\Leftrightarrow\) 15(y+1) = 12(2y-1)
\(\Leftrightarrow\) 9y = 27 \(\Leftrightarrow\) y=3 (6)
Từ (5), (6) có x=8
Vậy x=8, y=3 là nghiệm duy nhất của phương trình (1)
Phạm Dương Ngọc Nhi thế thì bạn học pp này đi. Cái pp này giúp cm nhiều bài một cách dễ dàng
lim\(\frac{3n^2+n-5}{2n^2+1}\)=lim\(\frac{n^2\left(3+\frac{1}{n}-\frac{5}{n^2}\right)}{n^2\left(2+\frac{1}{n}\right)}\)=\(\frac{3}{2}\)
lim\(\frac{\sqrt{9n^2-n}+1}{4n-2}\)=lim\(\frac{n\sqrt{9-\frac{1}{n}+\frac{1}{n^2}}}{n\left(4-\frac{2}{n}\right)}\)=lim\(\frac{\sqrt{9}}{4}\)=\(\frac{3}{2}\)
Giải:
Điều kiện là n\(\ge\)2, n\(\in\)Z
Ta có
(1) \(\Leftrightarrow\)\(\frac{\left(n+2\right)!}{\left(n-1\right)!3!}\)+\(\frac{\left(n+2\right)!}{n!2!}\)>\(\frac{5}{2}\)\(\frac{n!}{\left(n-2\right)!}\)
\(\Leftrightarrow\)\(\frac{n\left(n+1\right)\left(n+2\right)}{6}\)+\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)>\(\frac{5\left(n-1\right)n}{2}\)
\(\Leftrightarrow\)n(n2+3n+2) + 3(n2+3n+2) > 15(n2-n)
\(\Leftrightarrow\)n3-9n2+26n+6>0
\(\Leftrightarrow\)n(n2-9n+26)+6>0 (1)
Xét tam thứ bậc hai n2-9n+26, ta thấy \(\Delta\)=81-104<0
Vậy n2-9n+26>0 với mọi n. Từ đó suy ra với mọi n\(\ge\)2 thì (1) luôn luôn đúng. Tóm lại mọi số nguyên n\(\ge\)2 đều là nghiệm của (1).
a/
\(\Leftrightarrow3\left(1-sin^22x\right)+4sin2x-4=0\)
\(\Leftrightarrow-3sin^22x+4sin2x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(\frac{1}{3}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(\frac{1}{3}\right)+k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)
f/
\(\Leftrightarrow4\left(1-2sin^2\frac{x}{2}\right)-5sin\frac{x}{2}=1\)
\(\Leftrightarrow8sin^2\frac{x}{2}+5sin\frac{x}{2}-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\frac{x}{2}=-1\\sin\frac{x}{2}=\frac{3}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\pi+k4\pi\\x=2arcsin\left(\frac{3}{8}\right)+k4\pi\\x=2\pi-2arcsin\left(\frac{3}{8}\right)+k4\pi\end{matrix}\right.\)
a) Ta có
Do đó, y'<0 <=> <=> x≠1 và x2 -2x -3 <0
<=> x≠ 1 và -1<x<3 <=> x∈ (-1;1) ∪ (1;3).
b) Ta có
Do đó, y’≥0 <=> <=> x≠ -1 và x2 +2x -3 ≥ 0 <=> x≠ -1 và x ≥ 1 hoặc x ≤ -3 <=> x ≥ 1 hoặc x ≤ -3
<=> x∈ (-∞;-3] ∪ [1;+∞).
c).Ta có
Do đó, y’>0 <=>
<=> -2x2 +2x +9>0 <=> 2x2 -2x -9 <0 <=> <=> x∈ vì x2 +x +4 = (x+1/2)2 + 15/4 >0, với ∀ x ∈ R.
TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) C = (-4.78, -5.6) C = (-4.78, -5.6) C = (-4.78, -5.6) D = (7.82, -7.32) D = (7.82, -7.32) D = (7.82, -7.32) E = (-4.82, -6.92) E = (-4.82, -6.92) E = (-4.82, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) G = (-7.14, -8.07) G = (-7.14, -8.07) G = (-7.14, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) I = (-1.74, -9.56) I = (-1.74, -9.56) I = (-1.74, -9.56) J = (18.64, -9.56) J = (18.64, -9.56) J = (18.64, -9.56) K = (-7.17, -8.04) K = (-7.17, -8.04) K = (-7.17, -8.04) L = (12.3, -8.04) L = (12.3, -8.04) L = (12.3, -8.04) M = (-7.24, -7.99) M = (-7.24, -7.99) M = (-7.24, -7.99) N = (12.23, -7.99) N = (12.23, -7.99) N = (12.23, -7.99)
Bài 1. Ta có:
\(\begin{array}{l} S = \sum\limits_{k = 1}^n {{x^{2k}}} + \sum\limits_{k = 1}^n {\dfrac{1}{{{x^{2k}}}} + 2n} \\ = {x^2}\dfrac{{1 - {x^{2n}}}}{{1 - {x^2}}} + \dfrac{1}{{{x^2}}}.\dfrac{{1 - \dfrac{1}{{{x^{2n}}}}}}{{1 - \dfrac{1}{{{x^2}}}}} + 2n\\ = \dfrac{{\left( {1 - {x^{2n}}} \right)\left( {{x^{2n + 2}} - 1} \right)}}{{\left( {1 - {x^2}} \right){x^{2n}}}} + 2n \end{array}\)
Bài 2.
Ta có:
\(\begin{array}{l} T = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + ... + \dfrac{{2n - 1}}{{{2^n}}}\left( 1 \right)\\ \dfrac{1}{2}T = \dfrac{1}{{{2^2}}} + \dfrac{3}{{{2^3}}} + \dfrac{5}{{{2^4}}} + ... + \dfrac{{2n - 3}}{{{2^n}}} + \dfrac{{2n - 1}}{{{2^{n + 1}}}}\left( 2 \right) \end{array}\)
\((1)-(2)\)\(\Rightarrow \dfrac{1}{2}T = \dfrac{1}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + ... + \dfrac{2}{{{2^n}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}\)
\(\begin{array}{l} \Rightarrow T = 2\left[ {\dfrac{1}{2} + \dfrac{1}{2}\dfrac{{1 - {{\left( {\dfrac{1}{2}} \right)}^{n - 1}}}}{{1 - \dfrac{1}{2}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}} \right]\\ = 1 + \dfrac{{{2^{n - 1}} - 1}}{{{2^{n - 2}}}} - \dfrac{{2n - 1}}{{{2^n}}} \end{array}\)
\(S=x^2+\frac{1}{x^2}+2+x^4+\frac{1}{x^4}+2+...+x^{2n}+\frac{1}{x^{2n}}+2\)
\(=\left(x^2+x^4+...+x^{2n}\right)+\left(\frac{1}{x^2}+\frac{1}{x^4}+...+\frac{1}{x^{2n}}\right)+2n\)
\(=x^2.\frac{\left(x^2\right)^{n-1}-1}{x^2-1}+\frac{1}{x^2}.\frac{\left(\frac{1}{x^2}\right)^{n-1}-1}{\frac{1}{x^2}-1}+2n\)
\(=\frac{x^{2n}-x^2}{x^2-1}+\frac{x^{2-2n}-1}{1-x^2}+2n\)
\(T=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+...+\frac{2n-3}{2^{n-1}}+\frac{2n-1}{2^n}\)
\(\Rightarrow2T=1+\frac{3}{2}+\frac{5}{2^2}+...+\frac{2n-1}{2^{n-1}}\)
\(\Rightarrow T=1+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{n-1}}-\frac{2n-1}{2^n}\)
\(T=1+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-2}}-\frac{2n-1}{2^n}\)
\(T=1+1.\frac{\left(\frac{1}{2}\right)^{n-2}-1}{\frac{1}{2}-1}-\frac{2n-1}{2^n}=3-\frac{1}{2^{n-1}}-\frac{2n-1}{2^n}=3-\frac{1}{2^n}-\frac{n}{2^{n-1}}\)
Điều kiện để (1) có nghĩa là
\(\begin{cases}n\ge k\\n+3\ge0\\k+2\ge0\\n,k\in Z\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}n\ge k\\k\ge-2\\n,k\in Z\end{cases}\)
Do n,k \(\ge\) 0, nên điều kiện là n \(\ge\) k; n,k \(\in\)Z (2)
Ta có (1) \(\Leftrightarrow\) \(\frac{\left(n+5\right)!}{\left(n-k\right)!}\) \(\le\) 60\(\frac{\left(n+3\right)!}{\left(n-k+1\right)!}\)
\(\Leftrightarrow\) (n-4)(n+5) \(\le\) \(\frac{60}{n-k+1}\) \(\Leftrightarrow\) (n-4)(n+5)(n-k+1) \(\le\) 60 (3)
Vì n\(\ge\)k \(\Rightarrow\) n-k+1>0\(\Rightarrow\) n-k+1\(\ge\) 1
Ta nhận thấy nếu n\(\ge\)4, thì
(n+4)(n+5)\(\ge\)72 \(\Rightarrow\) VT (3) \(\ge\)72
Do đó mọi n\(\ge\)4 không thỏa mãn (3)
- Xét lần lượt các khả năng
1) Nếu n = 0, do 0\(\le\)k\(\le\)n\(\Rightarrow\)k=0
Khi n=k=0 thì VT(3)=4.5.1=20 \(\Rightarrow\) n=0, k=0 thỏa mãn (3)
2) Nếu n=1, do 0\(\le\)k\(\le\)n \(\Rightarrow\) \(\left[\begin{array}{nghiempt}k=0\\k=1\end{array}\right.\)
Thử lại n=1, k=0; n=1, k=1 đều thỏa mãn (3)
3) Nếu n=2 khi đó:
(3) \(\Leftrightarrow\) 6.7.(3-k)\(\le\)60
\(\Leftrightarrow\)3-k\(\le\)\(\frac{10}{7}\) \(\Rightarrow\) 3-k=1 \(\Rightarrow\)k=2
4) Nếu n=3
(3)\(\Leftrightarrow\) 7.8.(4-k)\(\le\)60
\(\Leftrightarrow\)4-k\(\le\)\(\frac{60}{56}\) \(\Rightarrow\) 4-k=1 \(\Rightarrow\) k=3
Vậy (1) có các nghiệm (n,k) sau
(0,0), (1,0), (1,1), (2,2), (3,3).
16.
\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)
17.
\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)
18.
\(y'=3x^2-2x\)
\(y'\left(-2\right)=16;y\left(-2\right)=-12\)
Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)
19.
\(y'=-\frac{1}{x^2}=-x^{-2}\)
\(y''=2x^{-3}=\frac{2}{x^3}\)
20.
\(\left(cotx\right)'=-\frac{1}{sin^2x}\)
21.
\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)
22.
\(lim\left(3^n\right)=+\infty\)
11.
\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)
12.
\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)
13.
\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)
14.
\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)
15.
\(y'=4\left(x-5\right)^3\)
Ta có
(1) \(\Leftrightarrow\) 1 + \(C_x^2\) + \(C_x^4\) + ... + \(C_x^{2n}\) \(\ge\) 22003 (2)
Theo công thức khai triển nhị thức newton, ta có
(1+t)2x = \(C_{2x}^0\) + \(C_{2x}^1\)t + \(C_{2x}^2\)t2 + ... + \(C_{2x}^{2x}\)t2x
(1 - t)2x = \(C_{2x}^0\) - \(C_{2x}^1\)t + \(C_{2x}^2\)t2 + .... + (-1)2x\(C_{2x}^{2x}\)t2x
Từ đó ta có
(1 + x)2x + (1 - t)2x = 2(1 + \(C_{2x}^2\)t2 + \(C_{2x}^4\)t4 + ... + \(C_{2x}^{2x}\)t2x)
Thay t = 1, có
1 + \(C_{2x}^2\) + \(C_{2x}^4\) + ... + \(C_{2x}^{2x}\) = 22x-1
Do đó
(2) \(\Leftrightarrow\) 22x-1 \(\ge\) 22003
\(\Leftrightarrow\) 2x - 1 \(\ge\) 2003
\(\Leftrightarrow\) x \(\ge\) 1002
Vậy với mọi số nguyên x \(\ge\) 1002 là nghiệm của (1)
(1) 1 + + + ... + 2 (2) Theo công thức khai triển nhị thức newton, ta có (1+t) = + t + t + ... + t (1 - t) = - t + t + .... + (-1) t Từ đó ta có (1 + x) + (1 - t) = 2(1 + t + t + ... + t ) Thay t = 1, có 1 + + + ... + = 2 Do đó (2) 2 2 2x - 1 2003 x 1002 Vậy với mọi số nguyên x 1002 là nghiệm của (1)