K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2021

đk: \(\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

Ta có: \(\frac{x}{x-2}+\frac{x+2}{x}>2\)

\(\Leftrightarrow\frac{x^2+\left(x-2\right)\left(x+2\right)-2x\left(x-2\right)}{x\left(x-2\right)}>0\)

\(\Leftrightarrow\frac{x^2+x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)

\(\Leftrightarrow\frac{4x-4}{x\left(x-2\right)}>0\Rightarrow\frac{x-1}{x\left(x-2\right)}>0\)

Nếu \(x-1>0\) và \(x\left(x-2\right)>0\)

=> \(x>1\) và \(\orbr{\begin{cases}x< 0\\x>2\end{cases}}\) => x > 2

Nếu \(\hept{\begin{cases}x-1< 0\\x\left(x-2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\0< x< 2\end{cases}}\Leftrightarrow0< x< 1\)

Vậy \(\orbr{\begin{cases}x>2\\0< x< 1\end{cases}}\)

15 tháng 5 2021

\(\frac{x}{x-2}+\frac{x+2}{x}>2\Leftrightarrow\frac{x^2+x^2-4}{x\left(x-2\right)}>2\)

\(\Leftrightarrow\frac{2x^2-4-2x\left(x-2\right)}{x\left(x-2\right)}>0\Leftrightarrow\frac{-4+4x}{x\left(x-2\right)}>0\)

TH1 : \(\hept{\begin{cases}-4\left(1-x\right)>0\\x\left(x-2\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}}\)

TH2 : \(\hept{\begin{cases}-4\left(1-x\right)< 0\\x\left(x-2\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 0\end{cases}\Leftrightarrow x< 0}}\)

\(\Leftrightarrow x>2;x< 0\)

Vậy tập nghiệm của bất pt là S = { \(x>2;x< 0\)}

11 tháng 5 2023

`|5x| = - 3x + 2`

Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :

`5x =-3x+2`

`<=> 5x +3x=2`

`<=> 8x=2`

`<=> x= 2/8=1/4` ( thỏa mãn )

Nếu `5x<0<=>x<0` thì phương trình trên trở thành :

`-5x = -3x+2`

`<=>-5x+3x=2`

`<=> 2x=2`

`<=>x=1` ( không thỏa mãn ) 

Vậy pt đã cho có nghiệm `x=1/4`

__

`6x-2<5x+3`

`<=> 6x-5x<3+2`

`<=>x<5`

Vậy bpt đã cho có tập nghiệm `x<5`

24 tháng 7 2021

\(\left|x-5\right|=2x\)ĐK : x>=0 

TH1 : x - 5 = 2x <=> x = -5 ( loại )

TH2 : x - 5 = -2x <=> 3x = 5 <=> x = 5/3 ( tm )

Vậy tập nghiệm pt là S = { 5/3 } 

\(\left(x-2\right)^2+2\left(x-1\right)\le x^2+4\)

\(\Leftrightarrow x^2-4x+4+2x-2-x^2-4\le0\)

\(\Leftrightarrow-2x-2\le0\Leftrightarrow x+1\ge0\Leftrightarrow x\ge-1\)

Vậy tập nghiệm bft là S = { x | x > = -1 } 

Ta có: \(\left|x-5\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=2x\left(x\ge5\right)\\x-5=-2x\left(x< 5\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=5\\x+2x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=5\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(loại\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)

18 tháng 9 2019

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(ĐKXĐ:x\ne\pm2\)

\(pt\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2-3x+2}{x^2-4}+\frac{3x+6}{x^2-4}\)

\(\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2+8}{x^2-4}\)

\(\Leftrightarrow x^2+8=9\Leftrightarrow x=\pm1\left(tm\right)\)

Vậy pt có 2 nghiệm là 1 và -1

18 tháng 9 2019

Điều kện :  \(x+2\ne0\) và \(x-2\ne0\Leftrightarrow x=\pm2\)

( Khi đó \(x^2-4=\left(x+2\right)\left(x-2\right)\ne0\) )

\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)

\(\Leftrightarrow\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)+3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-3x+2+3x+6=9\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)

Vậy tập nghiệm của PT là: \(S=\left\{-1;1\right\}\)

Chúc bạn học tốt !!!

15 tháng 5 2021

`x/(x-2)+(x+2)/x>2`

`<=>(x^2+x^2-4-2(x^2-4))/(x(x-2))>0`

`<=>4/(x(x-2))>0`

`<=>x(x-2)>0``

`<=>` $\left[ \begin{array}{l}\begin{cases}x>0\\x>2\end{cases}\\\begin{cases}x<0\\x<2\end{cases}\end{array} \right.$

`<=>` $\left[ \begin{array}{l}x>2\\x<0\end{array} \right.$

15 tháng 5 2021

hình như có vẻ sai sai

 

\(\Leftrightarrow x^2-4x+4+2x^2-4x+2-x^2< =4\)

=>-8x<=-2

hay x>=1/4

9 tháng 3 2017

a) Sai lầm là coi -2 là hạng từ và chuyển vế hạng tử này trong khi -2 là một nhân tử.

Lời giải đúng:

-2x > 23

⇔ x < 23 : (-2) (chia cho số âm nên đổi chiều)

⇔ x < -11,5

Vậy nghiệm của bất phương trình là x < -11,5

b) Sai lầm là nhân hai vế của bất phương trình với Giải bài 34 trang 49 SGK Toán 8 Tập 2 | Giải toán lớp 8 mà không đổi chiều bất phương trình.

Lời giải đúng:

Giải bài 34 trang 49 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy nghiệm của bất phương trình là x < -28

16 tháng 9 2017

Bài tập: Bất phương trình bậc nhất một ẩn | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn A

9 tháng 3 2018

Ta có: (x – 2)(x + 2) > x(x – 4) ⇔ x 2  – 4 >  x 2  – 4x

⇔  x 2 – 4 –  x 2  + 4x > 0

⇔ 4x – 4 > 0 ⇔ x > 1

Vậy tập nghiệm của bất phương trình là: {x|x > 1}

=>x^2-2x+6x+12=2x+12

=>x^2+4x-2x=0

=>x(x+2)=0

=>x=0(nhận) hoặc x=-2(loại)

1 tháng 10 2017

(x – 3)(x + 3) < (x + 2)2 + 3

⇔ x2 – 9 < x2 + 4x + 4 + 3

⇔ x2 – x2 - 4x < 4+ 3 + 9 (Chuyển vế và đổi dấu các hạng tử)

⇔ - 4x < 16

⇔ x > -4 (Chia cả hai vế cho -4 < 0, BPT đổi chiều).

Vậy BPT có nghiệm x > -4.