Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
a) 2x - 3 > 3(x - 2)
<=> 2x - 3 > 3x - 6
<=> -x > -3
<=> x < 3
b) \(\frac{12x+1}{12}\le\frac{9x+1}{3}-\frac{8x+1}{4}\)
\(\Leftrightarrow\frac{12x+1}{12}\le\frac{4\left(9x+1\right)}{12}-\frac{3\left(8x+1\right)}{12}\)
\(\Leftrightarrow12x+1\le36x+4-24x-3\)
\(\Leftrightarrow0x\le0\)
=> bpt vô số nghiệm
(Bạn tự biểu diễn tập nghiệm nha)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
a) \(\frac{x^2+2}{5}\ge0\)
\(\Rightarrow x^2+2\ge0\)( đúng với mọi x )
Vậy \(S=\left\{ℝ\right\}\)
b) \(\frac{x+2}{x-3}< 0\)( ĐKXĐ : \(x\ne3\))
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( loại )
2. \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3\)
Vậy nghiệm của bất phương trình là -2 < x < 3
c) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))
\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)
\(\Leftrightarrow1+\frac{2}{x-3}>1\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy nghiệm của bất phương trình là x > 3
Nhờ bạn khác vẽ trục số nhé vì mình mới lên lớp 8
\(x^2-4x+3\ge0\)
\(\left(x-1\right)\left(x-3\right)\ge0\)
TH1; X-1>=0 VA X-3>=0
TH2: X-1=<0 VA X-3<=0
Vay x>=3 hoac x<=1
1a)
ĐKXĐ :
x\(\ne\)0 ;x+1\(\ne\)0
<=>x\(x\ne0;x\ne-1\)
b)
3/x = 2/x+1
<=>3(x+1) / x(x+1) = 2x / x( x + 1 )
<=>3(x+1)=2x <=> 3x+3=2x
<=>x=-3(thỏa ĐKXĐ)
Vậy S={-3}
2)
\(x+2\ge0\)
<=>\(x\ge-2\)
Vậy S={ \(x\)/\(x\ge-2\)}
0 -2
Vì a>b(1) nên
nhân hai vế bất đẳng thức(1) cho 4 ta được:4a>4b(2)
cộng hai vế bất đẳng thức(2) cho 3 ta được : 4a+3>4b+3