K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2024

   15.23 + 5.23 - 5.7

= 15.8 + 5.8 - 35

= 120 + 40 - 35

= 160 - 35

= 125

19 tháng 9 2019

 15 + ( x : 5 - 1 ) = 24

15 + ( x : 5 - 1 ) = 16

x : 5 - 1 = 16 - 15 

x : 5 - 1 = 1

x : 5 = 1  + 1

x : 5 = 2

x      = 10 

Vậy x = 10

19 tháng 9 2019

carm ơn bạn

7 tháng 5 2016

\(a,=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

\(b,=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

7 tháng 5 2016

a,\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)=1.\frac{99}{100}=\frac{99}{100}\)

21 tháng 6 2015

a,\(=\frac{-5}{9}+\frac{8}{15}+\frac{-2}{11}+\frac{-4}{9}+\frac{7}{15}\)

\(\left(\frac{-5}{9}+\frac{-4}{9}\right)+\left(\frac{8}{15}+\frac{7}{15}\right)+\frac{-2}{11}\)

=-1+1+-2/11

=0+-2/11

=-2/11

b,\(=\left(\frac{5}{13}+\frac{8}{13}\right)+\left(\frac{-20}{41}+\frac{-21}{40}\right)+\frac{-5}{17}\)

=1+-1+-5/17

=0+-5/17

=-5/17

c,\(=\left(\frac{1}{5}+\frac{4}{5}\right)+\left(\frac{-2}{9}+-\frac{7}{9}\right)+\frac{16}{17}\)

=1+-1+16/17

=0+16/17

=16/17

d,\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)

 

a.\(\frac{-5}{9}\)+\(\frac{8}{15}\)+\(\frac{-2}{11}\)+\(\frac{4}{-9}\)+\(\frac{7}{15}\)

=\(\frac{-5}{9}\)+\(\frac{4}{-9}\)+\(\frac{8}{15}\)+\(\frac{7}{15}\)+\(\frac{-2}{11}\)

=(\(\frac{-5}{9}\)+\(\frac{-4}{9}\))+(\(\frac{8}{15}\)+\(\frac{7}{15}\))+\(\frac{-2}{11}\)

=(-1)+1+\(\frac{-2}{11}\)

=0+\(\frac{-2}{11}\)

=\(\frac{-2}{11}\).

 

10 tháng 7 2015

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)


\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

2 tháng 4 2017

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)=1-\frac{1}{101}=\frac{100}{101}\)\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+\frac{2}{5.7}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

17 tháng 4 2016

a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

17 tháng 4 2016

a, =\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)

=1__\(\frac{1}{101}\)

15 tháng 4 2017

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

14 tháng 8 2017

a)  \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(\frac{2}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

= 1. \(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

= 1. \(\left(1-\frac{1}{101}\right)\)

= 1. \(\left(\frac{101}{101}-\frac{1}{101}\right)\)

= 1. \(\frac{100}{101}\)

\(\frac{100}{101}\)

b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(\frac{5}{2}.\left(\frac{101}{101}-\frac{1}{101}\right)\)

\(\frac{5}{2}.\frac{100}{101}\)

\(\frac{500}{202}\)

27 tháng 4 2015

a) \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\left(1-\frac{1}{101}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)=\left(\frac{101}{101}-\frac{1}{101}\right)+0+...+0=\frac{100}{101}\)

b) \(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}=2\cdot\frac{1}{2}\left(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+...+\frac{5}{99\cdot101}\right)\)

\(=5\cdot\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\right)=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{5}{2}\left[\left(1-\frac{1}{101}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)\right]\)

\(=\frac{5}{2}\left[\left(\frac{101}{101}-\frac{1}{101}\right)+0+...+0\right]=\frac{5}{2}\cdot\frac{100}{101}=\frac{5\cdot100}{2\cdot101}=\frac{5\cdot50}{1\cdot101}=\frac{250}{101}\)

Mình ko chắc là đúng đâu, do nhẩm

chúc bạn học tốt!^_^

27 tháng 4 2015

a, =\(\frac{100}{101}\)

c)ta thấy 125*5^12=(5^3)*(5^12)=5^15 , =>124*5^12 <5^15

29 tháng 4 2018

â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)

              \(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)

               \(\Leftrightarrow2n-1⋮n+1\)khi  \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\)                            \

                \(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)

                 \(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)

Vậy \(n\in\left(-4;-2;0;2\right)\)

b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)

               \(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)

               \(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)

               \(\Rightarrow3n-2\in U\left(11\right)\)

               \(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)

               \(\Rightarrow n\in\left(-3;1;\right)\)

Phần c) bạn tự  làm nhé!

4 tháng 8 2017

Ai trả lời đầu tiên mik k cho.

6 tháng 8 2017

A:7 (dư 5)

A:13 (dư 4)

=) A + 9 chia hết cho 7 và 13

7 và 13 đều là số nguyên tố => A + 9 chia hết cho 7 x 13 = 91

=> A chia cho 91 dư 91 - 9 = 82

Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem số đó chia cho 91 dư 82