K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2016

Thi vòng 12 à bạn!!! Để mk chép đề mà làm 

17 tháng 12 2016

\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)

\(\Rightarrow\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)

\(x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)

\(\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)\ne0\)

\(\Rightarrow x=0\)

17 tháng 12 2016

\(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)

\(\Leftrightarrow\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)

\(\Leftrightarrow x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)

\(\Leftrightarrow x=0\). Do \(\Leftrightarrow x=0\)

3 tháng 1 2017

Bài 2:

TH1: \(x\le-\frac{5}{2}\)

<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)

<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)

TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)

<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)

TH3: \(x>\frac{2}{5}\)

<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)

Vậy không có số x thỏa mãn đề bài

3 tháng 1 2017

Bài 1:

Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Bài 3:

Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)

Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3

+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)

+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)

Vậy ...........

29 tháng 6 2017

Ta có : \(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}=\frac{x}{3^2}+\frac{x}{3^3}+\frac{x}{3^4}\)

<=> \(\frac{x}{2^2}+\frac{x}{2^3}+\frac{x}{2^4}-\frac{x}{3^2}-\frac{x}{3^3}-\frac{x}{3^4}=0\)

<=> \(x\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)=0\)

Mà \(\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}\right)\ne0\)

Vậy : x = 0

6 tháng 6 2018

\(\Rightarrow x.\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)=x.\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\)

\(\Rightarrow x.\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)-x.\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)=0\)

\(\Rightarrow x=0\)

Vậy x=0 nha

26 tháng 10 2016

\(\frac{11}{14}+\left|\frac{2}{7}-x\right|-\frac{5}{2}=\frac{4}{3}\)

\(\Leftrightarrow\frac{11}{14}+\left|\frac{2}{7}-x\right|=\frac{23}{6}\)

\(\Leftrightarrow\left|\frac{2}{7}-x\right|=\frac{64}{21}\)

\(\Leftrightarrow\frac{2}{7}-x=\pm\frac{64}{21}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\frac{2}{7}-x=\frac{64}{21}\\\frac{2}{7}-x=-\frac{64}{21}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{58}{21}\\x=\frac{10}{3}\end{array}\right.\)

\(x>0\)

Vậy \(x=\frac{10}{3}\)

 

26 tháng 10 2016

Thanks!

12 tháng 8 2019

\(\left(x-\frac{3}{5}\right).\left(x+\frac{2}{7}\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}\text{hoặc}\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}\text{hoặc}\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}-\frac{2}{7}< x< \frac{3}{5}\\x\in\varnothing\end{cases}}\)

\(\Rightarrow-\frac{2}{7}< x< \frac{3}{5}\)

\(\Rightarrow x=0\)

Vậy x = 0

12 tháng 8 2019

\(\left(x-\frac{3}{5}\right)\cdot\left(x+\frac{2}{7}\right)< 0\)

TH1 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}< 0\\x+\frac{2}{7}>0\end{cases}}\)                 \(\Rightarrow\hept{\begin{cases}x< \frac{3}{5}\\x>-\frac{2}{7}\end{cases}}\)              \(\Rightarrow\text{ }-\frac{2}{7}< x< \frac{3}{5}\)

TH2 : \(\Rightarrow\hept{\begin{cases}x-\frac{3}{5}>0\\x+\frac{2}{7}< 0\end{cases}}\)                 \(\Rightarrow\hept{\begin{cases}x>\frac{3}{5}\\x< -\frac{2}{7}\end{cases}}\)             \(\Rightarrow\text{ Không xảy ra}\)

                            Vì \(x\in Z\text{ }\Rightarrow\text{ }x=0\)