Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{3,3}{1,5+x^2}\) đạt GTLN thì 1,5+x2 đạt GTNN
Vì x2 > 0 nên GTNN của x = 0 => 1,5+x2 = 1,5
\(\frac{3,3}{1,5}\)=2,2
Vậy x = 2,2
wow!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(x^2\ge0\Rightarrow1,5+x^2\ge1,5\) nên
\(B=\frac{3,3}{1,5+x^2}\le\frac{3,3}{1,5}=2,2\)
\(B_{max}=2,2\)dấu = sảy ra khi x= 0
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$
$|x-2020|\geq 0$ với mọi $x$
$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$
Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$
Tức là $x=2020$
Vì (x - y)2 ≥ 0 ; (2x + 3y - 10)2 ≥ 0
=> A = (x - y)2 + (2x + 3y - 10)2 ≥ 0
=> A = (x - y)2 + (2x + 3y - 10)2 - 2 ≥ - 2
Dấu "=" xảy ra khi x - y = 0 hoặc 2x + 3y = 10 <=> x = y = 2
Vậy Amin là - 2 tại x = y = 2
a: |x|+2003>=2003
=>A<=2022/2003
Dấu = xảy ra khi x=0
b: |x|+1>=1
=>(|x|+1)^10>=1
=>B>=2010
Dấu = xảy ra khi x=0
Để \(B\) có \(GTLN\) thì \(1,5+x^2\) đạt \(GTNN\)
Ta có: \(x^2+1,5\ge1,5\)
Min \(x^2+1,5=1,5\) khi \(x=0\)
Vậy \(GTLN\) của \(B\) bằng \(2,2\) khi \(x=0\)
\(\left[6,5\right].\left[\frac{2}{3}\right]+\left[2\right].7,2+\left[8,4\right]-6,6=6.0+2.7,2+8,4-6,6\)
\(=16,2\)
GTNN:
Xét |-6,5-x| ≥ 0
Nhưng để A có GTNN <=> |-6,5-x| = 0 và A = 3,3 + 0 = 3,3
=> -6,5-x=0
=> x=-6,5-0
=> x= -6,5
Vậy GTNN của A = 3,3 <=> x= -6,5.
Cái này mình chỉ làm theo ý hiểu của mình nên nếu sai thì bạn bỏ qua nha:>