K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2021

\(P\left(x\right)-Q\left(x\right)=2x-6x-2\)

\(\rightarrow(2x-5x-3)-Q\left(x\right)=-4x-2\)

\(\rightarrow\left(-3x-3\right)-Q\left(x\right)=-4x-2\)

\(\rightarrow Q\left(x\right)=\left(-3x-3\right)-\left(-4x-2\right)\)

\(\rightarrow Q\left(x\right)=-3x-3+4x+2\)

\(\rightarrow Q\left(x\right)=\left(4x-3x\right)+\left(2-3\right)\)

\(\rightarrow Q\left(x\right)=x-1\)

15 tháng 5 2021

KQ

KQ -4X-2

Bài 1 . cho hai đa thức: P(x) = 4x4 - 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4a. Tính P(x) + Q(x);b. Tính P(x) - Q(x).Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6a. Tính M(2) b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)c. Tìm nghiệm của đa thức A(x)Bài 3. Tìm nghiệm của các đa thức sau:a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 e. 2x2 - 6           ...
Đọc tiếp

Bài 1 . cho hai đa thức: P(x) = 4x- 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4

a. Tính P(x) + Q(x);

b. Tính P(x) - Q(x).

Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6

a. Tính M(2) 

b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)

c. Tìm nghiệm của đa thức A(x)

Bài 3. Tìm nghiệm của các đa thức sau:

a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 

e. 2x- 6                   f. x(x - 1)                    g. x + 2x                  h. x( x + 2 )

Bài 4. cho hai đa thức: f(x) = 2x+ 3x- x + 1 - x2 - x4 - 6x3

                                     g(x) = 10x3 + 3 - x4 - 4x3 + 4x - 2x2

a. Thu gọn đa thức: f(x), g(x) và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến.

b. Tính h(x) = f(x) + g(x); K(x) = f(x) - g(x)

c. Tìm nghiệm của đa thức h(x)

Bài 5. Tìm nghiệm của các đa thức:

a. 9 - 3x                b. -3x + 4                 c. x- 9                   d. 9x- 4

e. x2 - 2                f. x( x - 2 )                g. x2 - 2x                  h. x(x2 + 1 )

1

Tách ra, dài quá mn đọc là mất hứng làm đó.

25 tháng 3 2018

Ta có

2 ⋅ P ( x ) = 2 ⋅ − 6 x 5 − 4 x 4 + 3 x 2 − 2 x = − 12 x 5 − 8 x 4 + 6 x 2 − 4 x  Khi dó  2 P ( x ) + Q ( x ) = − 12 x 5 − 8 x 4 + 6 x 2 − 4 x + 2 x 5 − 4 x 4 − 2 x 3 + 2 x 2 − x − 3

= - 12 x 5 - 8 x 4 + 6 x 2 - 4 x + 2 x 5 - 4 x 4 - 2 x 3 + 2 x 2 - x - 3 = - 12 x 5 + 2 x 5 + - 8 x 4 - 4 x 4 - 2 x 3 + 6 x 2 + 2 x 2 + ( - 4 x - x ) - 3 = - 10 x 5 - 12 x 4 - 2 x 3 + 8 x 2 - 5 x - 3

Chọn đáp án B

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

a)P(x) = 7x3 - x2 + 5x - 2x3 +6 - 8x

=5x^3-x^2-3x+6

 Q(x) = -2x + x3 - 4x2 + 3 - 5x2

=x^3-9x^2-2x+3

b)

P(x) - Q(x)=4^3+8x^2-x-3

P(x) + Q(x)=6^3-10x^2-5x+9

18 tháng 5 2022

\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-5.\left(\dfrac{1}{2}\right)^3+3\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5-5\left(\dfrac{1}{2}\right)^3+6\left(\dfrac{1}{2}\right)^2+\dfrac{2}{2}+5\)

\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5.1}{8}+\dfrac{3.1}{4}+6-\dfrac{5.1}{8}+\dfrac{6.1}{4}+6\)

\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=-\dfrac{5}{8}+\dfrac{3}{4}+6-\dfrac{5}{8}+\dfrac{3}{2}+6\)

\(P\left(\dfrac{1}{2}\right)+Q\left(\dfrac{1}{2}\right)=13\)

18 tháng 5 2022

\(Q\left(x\right)-P\left(x\right)=6\)

\(-5x^3+6x^2+2x+5+5x^3-3x^2-2x-5=6\)

\(3x^2=6\)

\(x^2=2\)

\(=>x=\pm\sqrt{2}\)

28 tháng 4 2022

Thu gọn và sắp  xếp các đa thức trên theo lũy thừa giảm dần của biến :

\(P\left(x\right)=3x^4-2x^3+3x+11\)

\(Q\left(x\right)=-3x^4+2x^3+2x+4\)

Tính :

\(P\left(x\right)+Q\left(x\right)=3x^4-2x^3+3x+11-3x^4+2x^3+2x+4\)

                      \(=5x+15\)

Đặt \(h\left(x\right)=0\)

\(\Rightarrow5x+15=0\)

\(\Rightarrow5x=-15\)

\(\Rightarrow x=-3\)

Vậy \(x=-3\) là nghiệm của h(x)

23 tháng 6 2017

Chọn C

Ta có: P(x) + Q(x) = x3+ x2+ 2x-1

⇒ Q(x) = (x3 + x2 + 2x-1) - P(x)

= 2x3 + 4x2 - 8x - 3.

cái Q(x)=\(5x^2-4x^3-2x+7\)

mik ghi nhầm xin lổy đc chx 

22 tháng 4 2021

a) \(P\left(x\right)=6x^3-3x^2+5x-1\)

\(Q\left(x\right)=5x^2-4x^2-2x+7=\left(5x^2-4x^2\right)-2x+7=x^2-2x+7\) ( Kết quả này cũng giống như sắp xếp nhé)

19 tháng 5 2021

`Q(x)=-5x^3+2x-3+2x-x^2-2`

`=-5x^3+4x-5`

`M(x)=P(x)+Q(x)`

`=5x^3-3x+7-5x^3+4x-5`

`=x+2`

`N(x)=P(x)-Q(x)`

`=5x^3-3x+7+5x^3-4x+5`

`=10x^3-7x+12`

b)Đặt `M(x)=0`

`<=>x+2=0`

`<=>x=-2`

Vậy M(x) có nghiệm `x=-2`

1k like đâu haha

19 tháng 5 2021

a) \(P\left(x\right)=5x^3-3x+7-x\\ =5x^3+\left(-3x-x\right)+7\\ =5x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\\ =-5x^3+\left(2x+2x\right)+\left(-3-2\right)+x^2\\ =-5x^3+4x-5+x^2\)

 

\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\\ =5x^3-4x+7+\left(-5x^3\right)+4x-5-x^2\\ =\left(5x^3-5x^3\right)+\left(-4x+4x\right)+\left(7-5\right)-x^2\\ =2-x^2\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)\\ =5x^3-4x+7-\left(-5x^3+4x-5+x^2\right)\\ =5x^3-4x+7+5x^3-4x+5-x^2\\ =\left(5x^3+5x^3\right)+\left(-4x-4x\right)+\left(7+5\right)+x^{^2}\\ =10x^3-8x+12+x^2\)

a: \(P\left(x\right)=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b: \(M\left(x\right)=-x^2+2\)

\(N\left(x\right)=10x^3+x^2-8x+12\)

c: Đặt M(x)=0

=>2-x2=0

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)