K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

Đáp án: A.

Ta có y(0) = -5, y(3) = -2, tọa độ đỉnh: x = -b/2a = 2

⇒ y(2) = -4 + 8 - 5 = -1; max y = max(-5; -2; -1) = -1.

Cách khác: Vì a = -1 nên parabol y = -x2 + 4x - 5 đạt cực đại tại đỉnh (2; -1). Vì vậy GTLN của hàm số trên đoạn [0;3] là y(2) = -1

26 tháng 2 2018

Đáp án: A.

Ta có y(0) = -5, y(3) = -2, tọa độ đỉnh: x = -b/2a = 2

⇒ y(2) = -4 + 8 - 5 = -1; max y = max(-5; -2; -1) = -1.

Cách khác: Vì a = -1 nên parabol y = - x 2  + 4x - 5 đạt cực đạt tại đỉnh (2; -1). Vì vậy giá trị lớn nhất của hàm số trên đoạn [0;3] là y(2) = -1.

29 tháng 7 2018

Đáp án: A.

Tập xác định: D = R \{3}

Giải sách bài tập Toán 12 | Giải sbt Toán 12 ∀x ∈ D.

Do đó f(x) nghịch biến trên (- ∞ ; 3) và (3; + ∞ ).

Ta thấy [0;2] ⊂ (- ∞ ;3). Vì vậy

max f(x) = f(0) = 1/3, min f(x) = f(2) = -3.

30 tháng 6 2017

Chọn C

Tập xác định của hàm số là ℝ .

Ta có: 

Vì trên khoảng  - 4 3 ; 0  hàm số đạt giá trị lớn nhất tại x = -1 nên hàm số đạt cực trị tại x = -1( cũng là điểm cực đại của hàm số) và a > 0.

Khi đó f'(x) = 0 ( đều là các nghiệm đơn)

Hàm số đạt cực đại tại x = -1 nên có bảng biến thiên:

=> x = - 3 2 là điểm cực tiểu duy nhất thuộc  - 2 ; - 5 4  

Vậy hàm số đạt giá trị nhỏ nhất tại x =  - 3 2  trên đoạn  - 2 ; - 5 4

16 tháng 3 2018

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

15 tháng 7 2019

Đáp án: A.

Tập xác định: D = R \{3}

Giải sách bài tập Toán 12 | Giải sbt Toán 12  ∀ x ∈ D.

Do đó f(x) nghịch biến trên (- ∞ ; 3) và (3; + ∞ ).

Ta thấy [0;2] ⊂ (- ∞ ;3). Vì vậy

max f(x) = f(0) = 1/3, min f(x) = f(2) = -3.

NV
5 tháng 12 2021

\(y'=\dfrac{3}{\left(x+2\right)^2}>0\Rightarrow\) hàm đồng biến trên đoạn đã cho

\(\Rightarrow\max\limits_{\left[0;1\right]}y=y\left(1\right)=0\)

26 tháng 9 2017

Chọn B

Vì y =  a x 3 + c x + d ,   a ≠ 0  là hàm số bậc ba và có  m i n x ∈ - ∞ ; 0   f ( x )   =   f ( - 2 ) nên a < 0 và y' = 0   có hai nghiệm phân biệt.

Ta có  có hai nghiệm phân biệt  ⇔ ac < 0

Vậy với a < 0, c > 0 thì y' = 0 có hai nghiệm đối nhau 

Từ đó suy ra


⇔ c = -12a

Ta có bảng biến thiên

Ta suy ra 

4 tháng 10 2017

Giá trị nhỏ nhất của hàm số trên đoạn [-2,3] là điểm thấp nhất của đồ thị trên đoạn đó. Vậy hàm số đạt giá trị nhỏ nhất tại x = -2. Thay x = -2 vào hàm số y đã cho ta có giá trị nhỏ nhất là -2.

Giá trị lớn nhất của hàm số trên đoạn [-2,3] là điểm cao nhất của đồ thị trên đoạn đó. Vậy hàm số đạt giá trị lớn nhất tại x = 3. Thay x = 3 vào hàm số y đã cho ta có giá trị lớn nhất là 3.