Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Giá trị của y thỏa mãn
\(x^2-6x+y^2+10y+34=-\left(4z-1\right)^2\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2+10y+25\right)+\left(4z-1\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2+\left(4z-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y+5\right)^2=0\\\left(4z-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y+5=0\\4z-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\\z=\dfrac{1}{4}\end{matrix}\right.\)
Vậy giá trị của y thỏa mãn là -5
Giá trị của y thỏa mãn là: " ..." => câu văn vô nghĩa
làm trên nên vô nghĩa : => vô nghĩa
Bài 3:
Ta có:
\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
Do đó:
\(A=3^4-1=80\)
Sửa đề: x+y=1
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\)
\(=1-3xy+3xy\left[1-2xy\right]+6x^2y^2\)
=1
\(x^2-6x+y^2+10y+34=-\left(4z-1\right)^2\)
\(x^2-6x+9+y^2+10y+25+\left(4z-1\right)^2=0\)
\(\left(x-3\right)^2+\left(y+5\right)^2+\left(4z-1\right)^2=0\)
\(\left[\begin{array}{nghiempt}x-3=0\\y+5=0\\4z-1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=3\\y=-5\\z=\frac{1}{4}\end{array}\right.\)