\(x^2-6x+y^2+10y+34=-\left(4z-1\right)^2\)

2. Tính...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

1. Giá trị của y thỏa mãn

\(x^2-6x+y^2+10y+34=-\left(4z-1\right)^2\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2+10y+25\right)+\left(4z-1\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+5\right)^2+\left(4z-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y+5\right)^2=0\\\left(4z-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y+5=0\\4z-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-5\\z=\dfrac{1}{4}\end{matrix}\right.\)

Vậy giá trị của y thỏa mãn là -5

5 tháng 3 2018

Giá trị của y thỏa mãn là: " ..." => câu văn vô nghĩa

làm trên nên vô nghĩa : => vô nghĩa

23 tháng 2 2017

Giúp mình với nha.

ko pit mà giúp 

5 tháng 10 2019

\(Q=\left(x-3\right)\left(4x+5\right)+2019\)

\(=4x^2-7x-15+2019\)

\(=4x^2-7x+2004\)

\(=\left(2x-\frac{7}{4}\right)^2+\frac{32015}{16}\ge\frac{32015}{16}\forall x\)

Dấu "=" xảy ra<=>\(\left(2x-\frac{7}{4}\right)^2=0\Leftrightarrow2x=\frac{7}{4}\Leftrightarrow x=\frac{7}{8}\)

5 tháng 10 2019

Giúp mk phần 2 vs m.n ơi

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

2 tháng 1 2018

ta có \(2x^2+2xy+2y^2+2x-2y+2=0\)

 <=>\(x^2+2xy+y^2+x^2+2x+1+y^2-2y+1=0\)

  <=>\(\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

<=>\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

thay vào, ta có M=\(0^{30}+\left(-1+2\right)^{12}+\left(1-1\right)^{2017}=1\)

Vậy M=1 

^_^

2 tháng 9 2017

X=2007 đúng 100%

10 tháng 12 2019

Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)

<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)

<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)

(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0

( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y

nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y

Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

<=> \(x=y=\frac{1}{3}\)

10 tháng 12 2019

Làm tiếp:

Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P

ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)

24 tháng 7 2018

\(x+y=1\)

\(\Leftrightarrow\)\(\left(x+y\right)^2=1\)

\(\Leftrightarrow\)\(x^2+y^2=1-2xy\)

\(x+y=1\)

\(\Leftrightarrow\)\(\left(x+y\right)^3=1\)

\(\Leftrightarrow\)\(x^3+y^3=1-3xy\)

\(H=1-3xy+3xy\left(1-2xy\right)+6x^2y^2\left(xy+y\right)\)

\(=1-6x^2y^2+6x^2y^2\left(xy+y\right)\)

\(=1-6x^2y^2\left(1-xy-y\right)\)

\(=1-6x^2y^2\left(x+y-xy-y\right)\)

\(=1-6x^2y^2\left(x-xy\right)\)

\(=1-6x^3y^2\left(1-y\right)\)

\(=1-6x^3y^2\left(x+y-y\right)\)

\(=1-6x^4y^2\)

mới ra đc đến đây