Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Ta có:
\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
Do đó:
\(A=3^4-1=80\)
\(A=\frac{1}{2}x^4+x^2y^2+\frac{1}{2}y^4-2x^2y^2\)
\(=\frac{1}{2}\left(x^4-2x^2y^2+y^4\right)=\frac{1}{2}\left(x^2-y^2\right)^2=\frac{1}{2}.4^2=8\)
Sửa đề: x+y=1
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\)
\(=1-3xy+3xy\left[1-2xy\right]+6x^2y^2\)
=1
\(8x^3+12x^2y+6xy^2+y^3=27\Leftrightarrow\left(2x+y\right)^3=27\Leftrightarrow2x+y=3\)
\(x\left(2x+y\right)+xy+\frac{1}{2}y^2=2x^2+2xy+\frac{1}{2}y^2=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}y\right)^2\)
\(=\frac{1}{2}.2\left(\sqrt{2}x+\frac{1}{\sqrt{2}}y\right)^2=\frac{1}{2}.\left(2x+y\right)^2=\frac{1}{2}.3^2=\frac{9}{2}\)
a) \(x+2y+\left(x-y\right)\)
\(=x+2y+x-y\)
\(=2x+y\)
b) \(2x+y-\left(3x-5y\right)\)
\(=2x+y-3x+5y\)
\(=-x+6y\)
c) \(3x^2-4y^2+6xy+7+\left(-x^2+y^2-8xy+9x+1\right)\)
\(=3x^2-4y^2+6xy+7-x^2+y^2-8xy+9x+1\)
\(=2x^2-3y^2-2xy+9x+8\)
d) \(4x^2y-2xy^2+8-\left(3x^2y+9xy^2-12xy+6\right)\)
\(=4x^2y-2xy^2+8-3x^2y-9xy^2+12xy-6\)
\(=x^2y-11xy^2+2+12xy\)