K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2020

\(\Delta'=m^2-4\ge0\Rightarrow m\le-2\) (do m âm)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m>0\\x_1x_2=4>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=3\Leftrightarrow\left(\frac{x_1}{x_2}\right)^2+2\left(\frac{x_1}{x_2}\right)\left(\frac{x_2}{x_1}\right)+\left(\frac{x_2}{x_1}\right)^2-2=3\)

\(\Leftrightarrow\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2=5\Leftrightarrow\frac{x_1}{x_2}+\frac{x_2}{x_1}=\sqrt{5}\) (do \(x_1;x_2>0\))

\(\Leftrightarrow x_1^2+x_2^2=\sqrt{5}x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\sqrt{5}x_1x_2\)

\(\Leftrightarrow4m^2-8=4\sqrt{5}\)

\(\Leftrightarrow m^2=2+\sqrt{5}\)

\(\Leftrightarrow m=-\sqrt{2+\sqrt{5}}\)

11 tháng 8 2019

Theo hệ thức vi-et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{matrix}\right.\)

\(P=\frac{5a^2-6ab+b^2}{2a^2-2ab+ac}=\frac{5-\frac{6b}{a}+\frac{b^2}{a^2}}{2-\frac{2b}{a}+\frac{c}{a}}=\frac{5+6\left(x_1+x_2\right)+\left(x_1+x_2\right)^2}{2+2\left(x_1+x_2\right)+x_1x_2}\)

Mặt khác :

\(\left\{{}\begin{matrix}x_1\le x_2\\x_2\le1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_1^2\le x_1x_2\\x_2^2\le1\end{matrix}\right.\Rightarrow x_1^2+x_2^2\le x_1x_2+1\Rightarrow\left(x_1+x_2\right)^2\le3x_1x_2+1\)

\(\Rightarrow P\le\frac{6+6\left(x_1+x_2\right)+3x_1x_2}{2+2\left(x_1+x_2\right)+x_1x_2}=3\)

8 tháng 2 2020

PT có 2 nghiệm \(x_1,x_2\Leftrightarrow\)\(\ge0\Leftrightarrow\)\(4\left(m-1\right)^2-4\left(2m^2-3m+1\right)\ge0\)\(\Leftrightarrow0\le m\le1\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m^2-3m+1\end{matrix}\right.\)

Suy ra \(P=\left|2m-2+2m^2-3m+1\right|=\left|2m^2-m-1\right|\)

Đến đây giải nốt nha

9 tháng 2 2020

Phạm Minh Quang giải giúp mình đi bạn , mình ko hiểu

31 tháng 5 2017

a) \(\Delta\)=\((m)^{2} -4(m-2)=m^2-4m+8=(m-2)^2+4 >0\)với mọi m \(\Rightarrow\)pt (1) luôn có nghiệm phân biệt với mọi m.

b)Do pt (1) có 2 ng pb với mọi m \(\Rightarrow\)áp dụng Vi_et ta có:

\(\begin{cases} x1+x2=m\\ x1.x2=m-2\end{cases}\).Pt (1) trở thành :

\(2[(x1+x2)^2-2x1.x2]-x1.x2=2(m-\frac{5}{4})^2+\frac{55}{8} \geq \frac{55}{8}\)với mọi m. GTNN của (1) là 55/8 khi và chỉ khi m=5/4

31 tháng 5 2017

phần a) là \((m-2)^2\) +4>0

NV
21 tháng 8 2020

Để pt có 2 nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m+1\right)^2-m\left(m-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\3m+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ge-\frac{1}{3}\end{matrix}\right.\)

Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m+1\right)}{m-1}\\x_1x_2=\frac{m}{m-1}\end{matrix}\right.\)

\(\left|x_1-x_2\right|\ge2\Leftrightarrow\left(x_1-x_2\right)^2\ge4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge4\)

\(\Leftrightarrow4\left(\frac{m+1}{m-1}\right)^2-\frac{4m}{m-1}\ge4\)

\(\Leftrightarrow\left(1+\frac{2}{m-1}\right)^2-\left(1+\frac{1}{m-1}\right)-1\ge0\)

Đặt \(\frac{1}{m-1}=t\)

\(\Rightarrow\left(2t+1\right)^2-\left(t+1\right)-1\ge0\)

\(\Leftrightarrow4t^2+3t-1\ge0\Rightarrow\left[{}\begin{matrix}t\ge\frac{1}{4}\\t\le-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{m-1}\ge\frac{1}{4}\\\frac{1}{m-1}\le-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{5-m}{m-1}\ge0\\\frac{m}{m-1}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1< m\le5\\0\le m< 1\end{matrix}\right.\)

\(\Rightarrow m_{max}=5\)

15 tháng 11 2018

a/ Ta có : △' = (-2)2-(m+3)

=4-m-3 = 1-m

De ptr co 2 nghiem x1 va x2 thì △' ≥0

=>1-m≥0 =>m≤1

Theo Viei{ x1+x2=4 ; x1x2=m+3

Ta co: |x1-x2|=2 ⇔(x1-x2)2=4

⇔(x1+x2)2-4x1x2=4

⇔42-4(m+3)=4

⇔m=0 (TM)

b/ Ta co: △ = (m-1)2-4(m+6)

=m2-6m-23 De ptr co 2 nghiem x1 , x2 thi △≥ 0

=> m2-6m-23≥0 (*)

Theo viet { x1+x2=1-m ; x1x2=m+6

db <=> ( x1+x2)2-2x1x2=10

⇔ (1-m)2-2(m+6)=10

⇔ m2-4m -21 =0

⇔[m=7 ; m=-3

Thay vao (*) =>m=7 (loai) ; m=-3 (tm)

c/ Ta co :△' = (-m)2-(3m-2)

= m2-3m+2

De ptr co 2 nghiem x1 , x2 thi : △' ≥0

⇔m2-3m+2≥0 (*)

Theo viet { x1+x2=2m ; x1x2=3m-2

db <=> ( x1+x2)2-3x1x2=4

⇔ (2m)2-3(3m-2)=4

⇔ 4m2--9m+2 =0

⇔[m=2 ; m=\(\dfrac{1}{4}\)

Thay vao (*) =>m=2 (tm) ; m=\(\dfrac{1}{4}\) (tm)

d/ Ta co : △=(-3)2-4(m-2)

=17-4m

De ptr co 2 nghiem x1 , x2 thi : △ ≥0

⇔17-4m≥0

⇔m≤\(\dfrac{17}{4}\)

theo viet{ x1+x2=3 ; x1x2= m-2

⇔(x1+x2)3-3x1x2(x1+x2) =9

⇔33-3.3(m-2)=9

⇔m=4(tm)

14 tháng 9 2020

\(\Delta=\left(-m\right)^2-4\left(m-1\right).1=\left(m-2\right)^2\)

\(\Rightarrow\)Pt có hai nghiệm phân biệt \(\forall m\ne2\)

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\),\(\Rightarrow x_1^2+x_2^2=\left(m-1\right)^2+1\) thay vào B:

\(B=\frac{2\left(m-1\right)+3}{\left(m-1\right)^2+1+2\left[\left(m-1\right)+1\right]}\)

\(B=\frac{2m+1}{m^2+2}\)

Mình chỉ biết làm đến đấy thôi, xl bạn T_T.
 

15 tháng 9 2020

Giờ mình ra GTNN rồi

\(B=\frac{2m+1}{m^2+2}\)

\(B=\frac{\frac{1}{2}\left(m^2+4m+4\right)-\frac{1}{2}\left(m^2+2\right)}{m^2+2}=\frac{\left(m+2\right)^2}{2\left(m^2+2\right)}-\frac{1}{2}\ge\frac{-1}{2}\)

\(\Rightarrow B_{min}=\frac{-1}{2}\)tại \(m=-2\)