K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2020

\(\Delta=\left(-m\right)^2-4\left(m-1\right).1=\left(m-2\right)^2\)

\(\Rightarrow\)Pt có hai nghiệm phân biệt \(\forall m\ne2\)

\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\),\(\Rightarrow x_1^2+x_2^2=\left(m-1\right)^2+1\) thay vào B:

\(B=\frac{2\left(m-1\right)+3}{\left(m-1\right)^2+1+2\left[\left(m-1\right)+1\right]}\)

\(B=\frac{2m+1}{m^2+2}\)

Mình chỉ biết làm đến đấy thôi, xl bạn T_T.
 

15 tháng 9 2020

Giờ mình ra GTNN rồi

\(B=\frac{2m+1}{m^2+2}\)

\(B=\frac{\frac{1}{2}\left(m^2+4m+4\right)-\frac{1}{2}\left(m^2+2\right)}{m^2+2}=\frac{\left(m+2\right)^2}{2\left(m^2+2\right)}-\frac{1}{2}\ge\frac{-1}{2}\)

\(\Rightarrow B_{min}=\frac{-1}{2}\)tại \(m=-2\)

25 tháng 10 2020

1.

\(y=m-1=\left|-x^2+4x+5\right|\)

Phương trình đã cho có 4 nghiệm phân biệt khi đương thẳng \(y=m-1\) cắt đồ thị hàm số tại 4 điểm phân biệt

\(\Rightarrow0< m-1< 9\Rightarrow m\in\left(1;10\right)\)

31 tháng 5 2017

a) \(\Delta\)=\((m)^{2} -4(m-2)=m^2-4m+8=(m-2)^2+4 >0\)với mọi m \(\Rightarrow\)pt (1) luôn có nghiệm phân biệt với mọi m.

b)Do pt (1) có 2 ng pb với mọi m \(\Rightarrow\)áp dụng Vi_et ta có:

\(\begin{cases} x1+x2=m\\ x1.x2=m-2\end{cases}\).Pt (1) trở thành :

\(2[(x1+x2)^2-2x1.x2]-x1.x2=2(m-\frac{5}{4})^2+\frac{55}{8} \geq \frac{55}{8}\)với mọi m. GTNN của (1) là 55/8 khi và chỉ khi m=5/4

31 tháng 5 2017

phần a) là \((m-2)^2\) +4>0

8 tháng 2 2020

PT có 2 nghiệm \(x_1,x_2\Leftrightarrow\)\(\ge0\Leftrightarrow\)\(4\left(m-1\right)^2-4\left(2m^2-3m+1\right)\ge0\)\(\Leftrightarrow0\le m\le1\)

Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m^2-3m+1\end{matrix}\right.\)

Suy ra \(P=\left|2m-2+2m^2-3m+1\right|=\left|2m^2-m-1\right|\)

Đến đây giải nốt nha

9 tháng 2 2020

Phạm Minh Quang giải giúp mình đi bạn , mình ko hiểu

22 tháng 3 2020

neu giai loi ra dai dong lam mk tom tat lai nha

NV
28 tháng 10 2019

\(\Leftrightarrow x^3-3mx^2-3x+3m+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(3m-1\right)x-3m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(3m-1\right)x-3m-2=0\left(1\right)\end{matrix}\right.\)

Do vai trò của 3 nghiệm là như nhau nên giả sử \(x_3=1\) còn \(x_1;x_2\) là 2 nghiệm pb của (1)

\(\Delta=\left(3m-1\right)^2+4\left(3m+2\right)=\left(3m+1\right)^2+8>0\)

(1) luôn có 2 nghiệm phân biệt

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=3m-1\\x_1x_2=-3m-2\end{matrix}\right.\)

\(x_1^2+x_2^2+x_3^2=15\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+1=15\)

\(\Leftrightarrow\left(3m-1\right)^2+2\left(3m+2\right)-14=0\)