Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(-m\right)^2-4\left(m-1\right).1=\left(m-2\right)^2\)
\(\Rightarrow\)Pt có hai nghiệm phân biệt \(\forall m\ne2\)
\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\),\(\Rightarrow x_1^2+x_2^2=\left(m-1\right)^2+1\) thay vào B:
\(B=\frac{2\left(m-1\right)+3}{\left(m-1\right)^2+1+2\left[\left(m-1\right)+1\right]}\)
\(B=\frac{2m+1}{m^2+2}\)
Mình chỉ biết làm đến đấy thôi, xl bạn T_T.
Giờ mình ra GTNN rồi
\(B=\frac{2m+1}{m^2+2}\)
\(B=\frac{\frac{1}{2}\left(m^2+4m+4\right)-\frac{1}{2}\left(m^2+2\right)}{m^2+2}=\frac{\left(m+2\right)^2}{2\left(m^2+2\right)}-\frac{1}{2}\ge\frac{-1}{2}\)
\(\Rightarrow B_{min}=\frac{-1}{2}\)tại \(m=-2\)
PT có 2 nghiệm \(x_1,x_2\Leftrightarrow\) △\(\ge0\Leftrightarrow\)\(4\left(m-1\right)^2-4\left(2m^2-3m+1\right)\ge0\)\(\Leftrightarrow0\le m\le1\)
Theo Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m^2-3m+1\end{matrix}\right.\)
Suy ra \(P=\left|2m-2+2m^2-3m+1\right|=\left|2m^2-m-1\right|\)
Đến đây giải nốt nha
Để pt có 2 nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m+1\right)^2-m\left(m-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\3m+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ge-\frac{1}{3}\end{matrix}\right.\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m+1\right)}{m-1}\\x_1x_2=\frac{m}{m-1}\end{matrix}\right.\)
\(\left|x_1-x_2\right|\ge2\Leftrightarrow\left(x_1-x_2\right)^2\ge4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge4\)
\(\Leftrightarrow4\left(\frac{m+1}{m-1}\right)^2-\frac{4m}{m-1}\ge4\)
\(\Leftrightarrow\left(1+\frac{2}{m-1}\right)^2-\left(1+\frac{1}{m-1}\right)-1\ge0\)
Đặt \(\frac{1}{m-1}=t\)
\(\Rightarrow\left(2t+1\right)^2-\left(t+1\right)-1\ge0\)
\(\Leftrightarrow4t^2+3t-1\ge0\Rightarrow\left[{}\begin{matrix}t\ge\frac{1}{4}\\t\le-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{m-1}\ge\frac{1}{4}\\\frac{1}{m-1}\le-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{5-m}{m-1}\ge0\\\frac{m}{m-1}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1< m\le5\\0\le m< 1\end{matrix}\right.\)
\(\Rightarrow m_{max}=5\)
Cho phương trình (m−1)x2 + 3x − 1=0
a , Tìm m để phương trình có hai nghiệm dương phân biệt
Để pt có 2 nghiệm dương phân biệt thì
✱△ > 0
△ = 32 - 4.(-1).(m-1) = 4m + 5 > 0 ⇔ m > \(\frac{-5}{4}\)
✱ S > 0
\(\frac{-3}{m-1}\) > 0 ⇔ m -1 < 0 ⇔ m < 1
✱ P > 0
\(\frac{-1}{m-1}\) > 0 ⇔ m - 1 < 0 ⇔ m < 1
Vậy m ∈ (\(\frac{-5}{4}\); 1) thì phương trình có 2 nghiệm dương phân biệt.
a) \(\Delta\)=\((m)^{2} -4(m-2)=m^2-4m+8=(m-2)^2+4 >0\)với mọi m \(\Rightarrow\)pt (1) luôn có nghiệm phân biệt với mọi m.
b)Do pt (1) có 2 ng pb với mọi m \(\Rightarrow\)áp dụng Vi_et ta có:
\(\begin{cases} x1+x2=m\\ x1.x2=m-2\end{cases}\).Pt (1) trở thành :
\(2[(x1+x2)^2-2x1.x2]-x1.x2=2(m-\frac{5}{4})^2+\frac{55}{8} \geq \frac{55}{8}\)với mọi m. GTNN của (1) là 55/8 khi và chỉ khi m=5/4
phần a) là \((m-2)^2\) +4>0