Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
2. Có : 1/x + 1/y + 1/z = 0
=> 1 + x/y + x/z = 0 => x/y + x/z = -1
Tương tự : y/x + y/z = -1 ; z/x + z/y = -1
=> x/y + x/z + y/x + y/z + z/x + z/y = -3
Lại có : 1/x+1/y+1/z = 0
<=> xy+yz+zx/xyz = 0
<=> xy+yz+zx = 0
Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)
= xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z
= xy/z^2+xz/y^2+xy/z^2-3
=> xy/z^2+xz/y^2+xy/z^2 = 3
=> ĐPCM
Tk mk nha
Áp dụng BĐT Cô si ta có:
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\)
\(\Rightarrow b+c\ge4a.4bc=16abc\)
\(\frac{1}{x^2+1}+\frac{1}{y^2+1}=\frac{2}{xy+1}\) (điều kiện: \(xy\ne-1\))
\(\Leftrightarrow\frac{x^2+y^2+2}{x^2y^2+x^2+y^2+1}=\frac{2}{xy+1}\)
\(\Leftrightarrow\left(xy+1\right)\left(x^2+y^2+2\right)=2x^2y^2+2x^2+2y^2+2\)
\(\Leftrightarrow xy\left(x^2+y^2\right)+2xy+x^2+y^2+2=2x^2y^2+2x^2+2y^2+2\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)+2xy-x^2-y^2=0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2=0\Rightarrow\left[{}\begin{matrix}xy=1\left(l\right)\\x=y\end{matrix}\right.\)
\(\Rightarrow xy=1\)
\(S=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{2}{xy+1}=\frac{4}{xy+1}=\frac{4}{1+1}=2\)