\(\frac{1}{x^2+1}+\frac{1}{y^2+1}=\frac{2}{xy+1}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 6 2020

\(\frac{1}{x^2+1}+\frac{1}{y^2+1}=\frac{2}{xy+1}\) (điều kiện: \(xy\ne-1\))

\(\Leftrightarrow\frac{x^2+y^2+2}{x^2y^2+x^2+y^2+1}=\frac{2}{xy+1}\)

\(\Leftrightarrow\left(xy+1\right)\left(x^2+y^2+2\right)=2x^2y^2+2x^2+2y^2+2\)

\(\Leftrightarrow xy\left(x^2+y^2\right)+2xy+x^2+y^2+2=2x^2y^2+2x^2+2y^2+2\)

\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)+2xy-x^2-y^2=0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2=0\Rightarrow\left[{}\begin{matrix}xy=1\left(l\right)\\x=y\end{matrix}\right.\)

\(\Rightarrow xy=1\)

\(S=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{2}{xy+1}=\frac{4}{xy+1}=\frac{4}{1+1}=2\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

20 tháng 5 2017

Cho các số thực dương x,y nha

20 tháng 5 2017

bên h h có đấy

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

2 tháng 6 2016

mk ko bit

mik tính ko ra

15 tháng 1 2018

2. Có : 1/x + 1/y + 1/z = 0

=> 1 + x/y + x/z = 0 => x/y + x/z = -1

Tương tự : y/x + y/z = -1 ; z/x + z/y = -1

=> x/y + x/z + y/x + y/z + z/x + z/y = -3

Lại có : 1/x+1/y+1/z = 0

<=> xy+yz+zx/xyz = 0

<=> xy+yz+zx = 0

Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)

           = xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z

           = xy/z^2+xz/y^2+xy/z^2-3

=> xy/z^2+xz/y^2+xy/z^2 = 3

=> ĐPCM

Tk mk nha

Áp dụng BĐT Cô si ta có: 

\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\)

\(\Rightarrow b+c\ge4a.4bc=16abc\)