Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=3x+22(x−1)−3(2x+1)
Gía trị phân thức A được xác định khi 2 (x - 1) - 3 (2x + 1) \(\ne0\)
=> Nếu tìm được x khi phân thức A = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức A được xác định.
Ta có phương trình:
2 (x - 1) - 3 (2x + 1) \(=0\)
hay 2x - 2 - 6x - 3 = -4x - 5 = 0
=> x = (0 + 5) : (-4) = \(\dfrac{-5}{4}\)
Vậy x \(\ne\dfrac{-5}{4}\) thì giá trị phân thức A
=3x+22(x−1)−3(2x+1)được xác định.
b) \(B=\dfrac{0,5\left(x+3\right)-2}{1,2\left(x+0,7\right)-4\left(0,6x+0,9\right)}\)
Gía trị phân thức B được xác định khi 1,2 (x + 0,7) - 4 (0,6x + 0,9) \(\ne\) 0
=> Nếu tìm được x khi phân thức B = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức B được xác định.
Ta có phương trình:
1,2 (x + 0,7) - 4 (0,6x + 0,9) = 0
hay 1,2x + 0,84 - 2,4x - 3,6 = -1,2x - 2,76 = 0
=> x = (0 + 2,76) : (-1,2) = \(\dfrac{-23}{10}=-2,3\)
Vậy x \(\ne0\) thì giá trị phân thức B
=0,5(x+3)−21,2(x+0,7)−4(0,6x+0,9)được xác định.
Sửa lại:
a) \(A=\dfrac{3x+2}{2\left(x-1\right)-3\left(2x+1\right)}\)
Gía trị phân thức A được xác định khi 2 (x - 1) - 3 (2x + 1) ≠0
=> Nếu tìm được x khi phân thức A = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức A được xác định.
Ta có phương trình:
2 (x - 1) - 3 (2x + 1) =0
hay 2x - 2 - 6x - 3 = -4x - 5 = 0
=> x = (0 + 5) : (-4) = \(\dfrac{-5}{4}=-1,25\)
Vậy x ≠ \(-1,25\) thì giá trị phân thức A được xác định.
b) \(B=\dfrac{0,5\left(x+3\right)-2}{1,2\left(x+0,7\right)-4\left(0,6x+0,9\right)}\)
Gía trị phân thức B được xác định khi 1,2 (x + 0,7) - 4 (0,6x + 0,9) ≠ 0
=> Nếu tìm được x khi phân thức B = 0 thì sẽ tìm được điều kiện của x để giá trị phân thức B được xác định.
Ta có phương trình:
1,2 (x + 0,7) - 4 (0,6x + 0,9) = 0
hay 1,2x + 0,84 - 2,4x - 3,6 = -1,2x - 2,76 = 0
=> x = (0 + 2,76) : (-1,2) = \(\dfrac{-23}{10}\)=−2,3
Vậy x ≠ -2,3 thì giá trị phân thức B được xác định.
a )\(\left[\begin{array}{nghiempt}x+1\ne0\\2x-3\ne0\end{array}\right.\)
\(ĐKXĐ:x\ne-1,x\ne\frac{3}{2}\)
b ) \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)
Để \(A=3\) thì :
\(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=-\frac{3}{2}\)
Chúc bạn học tốt
a) ĐKXĐ:\(x\ne-1,x\ne\frac{3}{2}\)
b)\(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)
để A = 3 thì \(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=\frac{-3}{2}\)
DKXD : \(x+1\ne0\Rightarrow x\ne-1,2x-3\ne0\Rightarrow2x\ne3\Rightarrow x\ne\frac{3}{2}\)
\(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=3\Rightarrow A==\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{3.\left(\left(x+1\right)\left(2x-3\right)\right)}{\left(x+1\right)\left(2x-3\right)}\)
\(\Rightarrow A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{3.\left(2x^2-3x-2x+3\right)}{\left(x+1\right)\left(2x-3\right)}\Rightarrow A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{6x^2-9x-6x+9}{\left(x+1\right)\left(2x-3\right)}\)\(\Rightarrow A=2x^2-3x=6x^2-15x+9\Rightarrow A=0=4x^2-12x+9\Rightarrow A=0=\left(2x-3\right)^2\)
\(\Rightarrow2x-3=0\Rightarrow x=\frac{3}{2}\left(TMDKXD\right)\)
t i c k cho mình 1 cái nha mình bị trừ 50đ ùi hic hic ủng hộ nhé
a)\(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b)\(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=10\)\(\Leftrightarrow\frac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=10\)
\(\Leftrightarrow\frac{3x}{2x-6}=10\)\(\Leftrightarrow3x=10\left(2x-6\right)\)
\(\Leftrightarrow3x=20x-60\)\(\Leftrightarrow17x=60\Leftrightarrow x=\frac{60}{17}\)
a. ĐK \(\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)
b. \(A=\frac{x^2+2x}{2x\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\)
Để \(A=1\Rightarrow\frac{x-1}{2}=1\Rightarrow x=3\)
Để \(A=-3\Rightarrow\frac{x-1}{2}=-3\Rightarrow x=-5\)
Vậy với x=3 thì A=1 ; với x=-5 thì A=-3
a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)
b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)
\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)
\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)
\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)
\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)
\(B=4\)
Vậy với mọi giá trị của x thì B luôn bằng 4
Vậy giá trị của B không phụ thuộc vào biến ( đpcm )
\(Giải:\)
\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)
\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)
\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)
điều kiện của x để gtrị của biểu thức đc xác định
=>\(2x+10\ne0;x\ne0:2x\left(x+5\right)\ne0\)
\(2x+5\ne0;x\ne0\)
=>\(x\ne-5;x\ne0\)
vậy đkxđ là \(x\ne-5;x\ne0\)
rút gon giống với bạn nguyen thuy hoa đến \(\dfrac{x-1}{2}\)
b,để bt =1=>\(\dfrac{x-1}{2}=1\)
=>x-1=2
=>x=3 thỏa mãn đkxđ
c,d giống như trên
Để \(\dfrac{A\left(x\right)}{B\left(x\right)}\) XĐ \(\Rightarrow\) \(B\left(x\right)\ne0\)
Để \(\dfrac{A\left(x\right)}{B\left(x\right)}\)xác định
\(\Leftrightarrow B\left(x\right)\ne0\)