Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )\(\left[\begin{array}{nghiempt}x+1\ne0\\2x-3\ne0\end{array}\right.\)
\(ĐKXĐ:x\ne-1,x\ne\frac{3}{2}\)
b ) \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)
Để \(A=3\) thì :
\(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=-\frac{3}{2}\)
Chúc bạn học tốt
a)\(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b)\(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=10\)\(\Leftrightarrow\frac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=10\)
\(\Leftrightarrow\frac{3x}{2x-6}=10\)\(\Leftrightarrow3x=10\left(2x-6\right)\)
\(\Leftrightarrow3x=20x-60\)\(\Leftrightarrow17x=60\Leftrightarrow x=\frac{60}{17}\)
a) P xác định <=> \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b)\(P=\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=1\Leftrightarrow3x^2+3x=\left(x+1\right)\left(2x-6\right)\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)\left(2x-6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-2x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
Vì \(x\ne-1\Leftrightarrow x+1\ne0\Rightarrow x+6=0\Leftrightarrow x=-6\)
Vậy ........
a, ĐỂ \(\frac{2x+4}{x\left(x+2\right)}\)xác định
\(\Rightarrow\hept{\begin{cases}x\ne0\\x+2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
a) ĐKXĐ: \(^{x^3+2x^2+x+2}\)khác 0
=> x^2(x+2)+(x+2) Khác 0
=> (x^2+1)(x+2) khác 0
=> x^2 khác -1(vô lý) và x khác -2
Vậy x khác -2 thì biểu thức A được xác định
b)\(A=\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)
\(=\frac{3x^2\left(x+2\right)}{\left(x^2+1\right)\left(x+2\right)}=\frac{3x^2}{x^2+1}\)
Để A=2 thì \(\frac{3x^2}{x+2}=2\)=>\(3x^2=2\left(x^2+1\right)=>3x^2=2x^2+2\)
\(=>x^2=2=>x=\sqrt{2}\)(Thỏa mãn điều kiện xác định)
a) ĐKXĐ \(x +1\ne0=>x\ne-1;2x-6\ne0=>x\ne3\)
b) ta có
\(P=\frac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=\frac{3x}{2x-6}\)
để P = 1 thì \(\frac{3x}{2x-6}=1= >3x=2x-6\)
\(< =>3x-2x=-6=>x=-6\)
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
a) ĐKXĐ:\(x\ne-1,x\ne\frac{3}{2}\)
b)\(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)
để A = 3 thì \(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=\frac{-3}{2}\)
DKXD : \(x+1\ne0\Rightarrow x\ne-1,2x-3\ne0\Rightarrow2x\ne3\Rightarrow x\ne\frac{3}{2}\)
\(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=3\Rightarrow A==\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{3.\left(\left(x+1\right)\left(2x-3\right)\right)}{\left(x+1\right)\left(2x-3\right)}\)
\(\Rightarrow A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{3.\left(2x^2-3x-2x+3\right)}{\left(x+1\right)\left(2x-3\right)}\Rightarrow A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{6x^2-9x-6x+9}{\left(x+1\right)\left(2x-3\right)}\)\(\Rightarrow A=2x^2-3x=6x^2-15x+9\Rightarrow A=0=4x^2-12x+9\Rightarrow A=0=\left(2x-3\right)^2\)
\(\Rightarrow2x-3=0\Rightarrow x=\frac{3}{2}\left(TMDKXD\right)\)
t i c k cho mình 1 cái nha mình bị trừ 50đ ùi hic hic ủng hộ nhé