Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{z}{x}=\frac{1}{6}\Rightarrow\frac{z}{1}=\frac{x}{6}\Rightarrow\frac{z}{2}=\frac{x}{12}\left(1\right)\)
\(\frac{y}{z}=\frac{3}{2}\Rightarrow\frac{y}{3}=\frac{z}{2}\left(2\right)\)
\(\frac{t}{x}=\frac{4}{3}\Rightarrow\frac{t}{4}=\frac{x}{3}\Rightarrow\frac{t}{16}=\frac{x}{12}\left(3\right)\)
Từ (1),(2) và (3)\(\Rightarrow\frac{z}{2}=\frac{x}{12}=\frac{y}{3}=\frac{t}{16}\)
\(\Rightarrow\frac{t}{y}=\frac{16}{3}\)
Vậy \(\frac{t}{y}=\frac{16}{3}\)
y/z .z/x=3/2.1/6=1/4 nên y/x bằng 1/4 hay x/y bằng 4
t/x .x/y=4/3.4 nên t/y =16/3
x/2=y/5 ; y/3=z/4 ; z/6=t/11
<=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{20}\); z/6=t/11
<=> \(\frac{x}{36}=\frac{y}{90}=\frac{z}{120}=\frac{t}{220}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{36}=\frac{y}{90}=\frac{z}{120}=\frac{t}{220}=\frac{2x+y-z+\frac{t}{2}}{2.36+90-120+\frac{220}{2}}=\frac{-76}{152}=\frac{-1}{2}\)
Từ đó => ddc x,y,z
Ta có: \(\frac{t}{x}\)= \(\frac{4}{3}\)=\(\frac{8}{12}\) \(\frac{z}{x}\)=\(\frac{1}{6}\)=\(\frac{2}{12}\)
\(\frac{y}{z}\)=\(\frac{3}{2}\)
Suy ra: \(\frac{t}{y}\)=\(\frac{8}{3}\)
A) ta có \(\frac{X}{2}=\frac{Y}{3}\)=>\(\frac{X}{8}=\frac{Y}{12}\)(1)
\(\frac{Y}{4}=\frac{Z}{5}\)=>\(\frac{Y}{12}=\frac{Z}{15}\)(2)
Từ (1)và (2)=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x-y-z=28
đến đây tự làm
c) \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}=0\) và \(\left(y+0,4\right)^{100}=0\) và \(\left(z-3\right)^{678}=0\)
+) \(\left(x-\frac{1}{5}\right)^{2004}=0\Rightarrow x-\frac{1}{5}=0\Rightarrow x=\frac{1}{5}\)
+) \(\left(y+0,4\right)^{100}=0\Rightarrow y+0,4=0\Rightarrow y=-0,4\)
+) \(\left(z-3\right)^{678}=0\Rightarrow z-3=0\Rightarrow z=3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{1}{5};-0,4;3\right)\)
Lời giải:
a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)
Vậy: \(x=20;y=12;z=42\)
b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)
Vây:\(x=30;y=40;z=56\)
c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54
\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)
\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)
Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)
Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)
Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)
Ta có:
\(\frac{t}{x}=\frac{4}{3}\Rightarrow\frac{x}{t}=\frac{3}{4}\)
Vậy ta có:
\(\frac{x}{t}.\frac{y}{z}.\frac{z}{x}=\frac{3.3.1}{4.2.6}\)\(\Rightarrow\frac{y}{t}=\frac{3}{16}\Rightarrow\frac{t}{y}=\frac{16}{3}\)
Vậy \(\frac{t}{y}=\frac{16}{3}\)
Ta có: \(\frac{y}{z}=\frac{3}{2}\) => \(\frac{z}{y}=\frac{2}{3}\)
=> \(\frac{t}{x}.\frac{z}{y}.\frac{z}{x}=\frac{4}{3}.\frac{2}{3}.\frac{1}{6}\)
=> \(\frac{t}{y}=\frac{4}{27}\)