Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{z}{x}=\frac{1}{6}\Rightarrow\frac{z}{1}=\frac{x}{6}\Rightarrow\frac{z}{2}=\frac{x}{12}\left(1\right)\)
\(\frac{y}{z}=\frac{3}{2}\Rightarrow\frac{y}{3}=\frac{z}{2}\left(2\right)\)
\(\frac{t}{x}=\frac{4}{3}\Rightarrow\frac{t}{4}=\frac{x}{3}\Rightarrow\frac{t}{16}=\frac{x}{12}\left(3\right)\)
Từ (1),(2) và (3)\(\Rightarrow\frac{z}{2}=\frac{x}{12}=\frac{y}{3}=\frac{t}{16}\)
\(\Rightarrow\frac{t}{y}=\frac{16}{3}\)
Vậy \(\frac{t}{y}=\frac{16}{3}\)
y/z .z/x=3/2.1/6=1/4 nên y/x bằng 1/4 hay x/y bằng 4
t/x .x/y=4/3.4 nên t/y =16/3
Ta có:
\(\frac{t}{x}=\frac{4}{3}\Rightarrow\frac{x}{t}=\frac{3}{4}\)
Vậy ta có:
\(\frac{x}{t}.\frac{y}{z}.\frac{z}{x}=\frac{3.3.1}{4.2.6}\)\(\Rightarrow\frac{y}{t}=\frac{3}{16}\Rightarrow\frac{t}{y}=\frac{16}{3}\)
Vậy \(\frac{t}{y}=\frac{16}{3}\)
x/2=y/5 ; y/3=z/4 ; z/6=t/11
<=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{20}\); z/6=t/11
<=> \(\frac{x}{36}=\frac{y}{90}=\frac{z}{120}=\frac{t}{220}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{36}=\frac{y}{90}=\frac{z}{120}=\frac{t}{220}=\frac{2x+y-z+\frac{t}{2}}{2.36+90-120+\frac{220}{2}}=\frac{-76}{152}=\frac{-1}{2}\)
Từ đó => ddc x,y,z
A) ta có \(\frac{X}{2}=\frac{Y}{3}\)=>\(\frac{X}{8}=\frac{Y}{12}\)(1)
\(\frac{Y}{4}=\frac{Z}{5}\)=>\(\frac{Y}{12}=\frac{Z}{15}\)(2)
Từ (1)và (2)=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x-y-z=28
đến đây tự làm
c) \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}=0\) và \(\left(y+0,4\right)^{100}=0\) và \(\left(z-3\right)^{678}=0\)
+) \(\left(x-\frac{1}{5}\right)^{2004}=0\Rightarrow x-\frac{1}{5}=0\Rightarrow x=\frac{1}{5}\)
+) \(\left(y+0,4\right)^{100}=0\Rightarrow y+0,4=0\Rightarrow y=-0,4\)
+) \(\left(z-3\right)^{678}=0\Rightarrow z-3=0\Rightarrow z=3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{1}{5};-0,4;3\right)\)
Ta có: \(\frac{t}{x}\)= \(\frac{4}{3}\)=\(\frac{8}{12}\) \(\frac{z}{x}\)=\(\frac{1}{6}\)=\(\frac{2}{12}\)
\(\frac{y}{z}\)=\(\frac{3}{2}\)
Suy ra: \(\frac{t}{y}\)=\(\frac{8}{3}\)